

TRIZ

Теория Решения Изобретателъских Задач

CONFERENCIA EST - CEPTM "MOSCONI" - IUE 15 Oct 2015

TEORÍA DE RESOLUCIÓN DE PROBLEMAS INVENTIVOS

Lic Carlos Requena - UTN FRGP

carloseduardorequena@yahoo.com.ar

Ing. JUAN CARLOS NISHIYAMA

Lic. TATIANA ZAGORODNOVA

Lic. FERNANDO YONNI

Estud. Ingeniería ROCÍO DELGER

Estud. Ingeniería FERNANDO NAVASCUES

Lic. CARLOS REQUENA

¿QUÉ ES TRIZ?

"TRIZ ES UNA METODOLOGÍA SISTEMÁTICA <u>ORIENTADA</u> Y BASADA EN CONOCIMIENTOS HUMANO."

Genrich Saulovich Altshuller

Creador del TRIZ

15 de octubre de 1926 –

24 de septiembre de 1998

BREVE HISTORIA DE TRIZ

SU FILOSOFÍA DE TRABAJO ES LA DE CONTRIBUIR AL SUEÑO DE CUALQUIER PROYECTO:

SER INNOVADOR Y CONTRIBUIR AL ÉXITO EMPRESARIAL

LA METODOLOGÍA TRIZ ES COMO UN INSTRUMENTO CIENTÍFICO PARA SISTEMATIZAR LA INNOVACIÓN



LA EMPRESA QUE NO INNOVA, SIMPLEMENTE... ¡DESAPARECE!

(Innovar o Morir, Darell Mann)

INERCIA PSICOLÓGICA

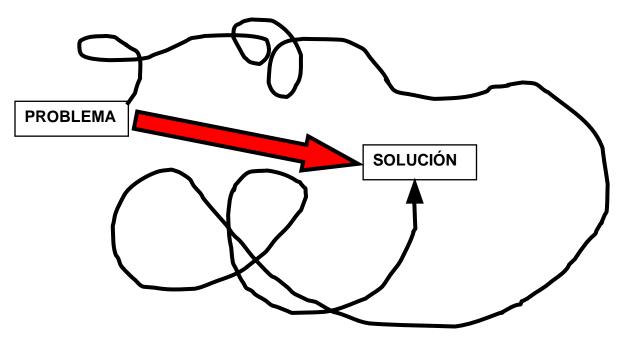
RESOLVER
 PROBLEMAS,
 DEPENDE DE LAS
 HABILIDADES
 PERSONALES.

Cuerpo del conocimiento s s s s

• EL ANALISTA DE PROBLEMAS FRECUENTEMENTE BUSCA SOLUCIONES EN EL CONJUNTO ACOTADO DE SU CONOCIMIENTO Y EXPERIENCIA.

MÉTODOS TRADICIONALES PARA GENERAR IDEAS:

- ITERATIVO O DE "PRUEBA Y ERROR".
- TORMENTA DE IDEAS (BRAINSTORMING).
- DIAGRAMA DE ISHIKAWA O DE "CAUSA-EFECTO".
- ANÁLISIS MORFOLÓGICO.
- SINÉCTICA DE WILLIAM GORDON, ETC.



TODOS ESTOS MÉTODOS SON MUY POCO EFECTIVOS PARA LA GENERACIÓN DE INVENTOS O INNOVACIONES TECNOLÓGICAS, DE MANERA SISTEMÁTICA, EN ESPECIAL PROBLEMAS CON UN ALTO GRADO DE DIFICULTAD.

ESTRATEGIA DE BÚSQUEDA DE SOLUCIÓN A PROBLEMAS POR MÉTODOS COMUNES, NO ESTRUCTURADOS

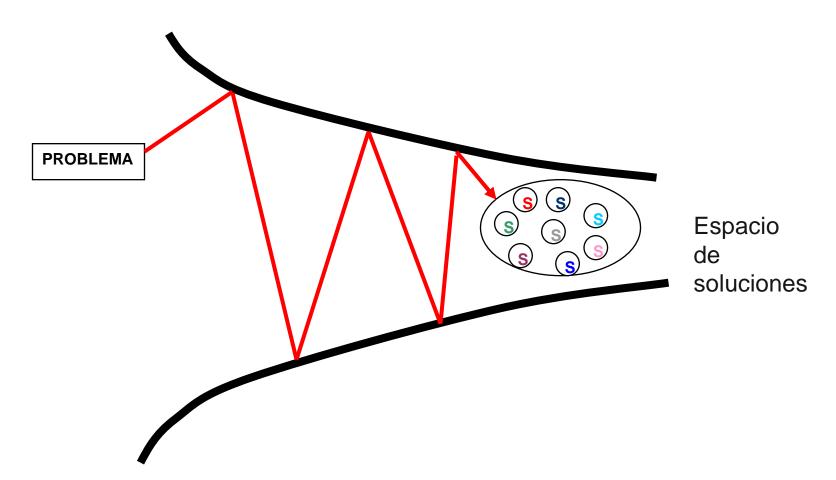
MUERTE POR APLASTAMIENTO DE UN MILLÓN DE HERRAMIENTAS

TODOS ESTOS MÉTODOS SON MUY POCO EFECTIVOS PARA LA GENERACIÓN DE INVENTOS O INNOVACIONES TECNOLÓGICAS, DE MANERA SISTEMÁTICA, EN ESPECIAL PROBLEMAS CON UN ALTO GRADO DE DIFICULTAD.

¿QUÉ HACER PARA INNOVAR?

¡GENERAR GRANDES IDEAS! ¡SER CREATIVO!

PERO...



¿Es posible destilar lo mejor del conocimiento humano ?

LOS MÉTODOS ESTRUCTURADOS NO LLEGAN A UNA SOLUCIÓN, SINO QUE ALCANZAN ESPACIOS DE SOLUCIONES

HAY DOS TIPOS DE PROBLEMAS QUE TODOS CONOCEMOS:

- ·SOLUCIÓN CONOCIDA.
- ·SOLUCIÓN DESCONOCIDA.

MÉTODO TRIZ

- •IDENTIFICAR EL PROBLEMA.
- •REFORMULAR EL PROBLEMA PARA TRIZ.
- •BUSCAR POR PROBLEMAS PREVIAMENTE RESUELTOS.
- •BUSCAR POR SOLUCIONES ANÁLOGAS.

Problema estándar genérico

Solución estándar genérico

Mi problema específico Mi solución específica

OPERADOR ABSTRACTO

PROBLEMA ABSTRACTO

$$ax^2 + bx + c = 0$$

SOLUCION ABSTRACTA

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

ESPECIFICACION

PROBLEMA CONCRETO

$$2x^2 - 5x + 2 = 0$$

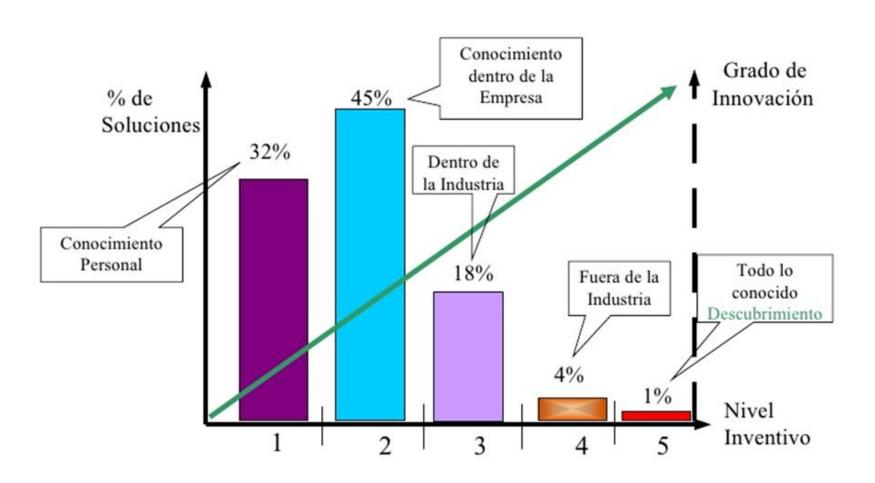
$$x_1 = 2$$
 $x_2 = \frac{1}{2}$

PRUEBA Y ERROR

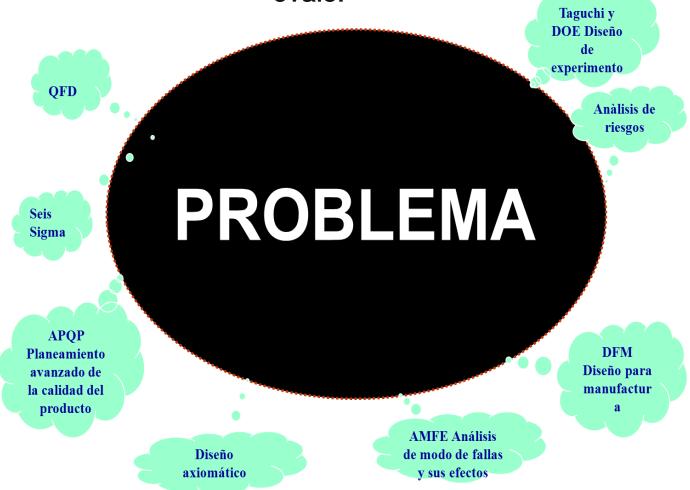
PROBLEMA CONCRETO

$$2x^2 - 5x + 2 = 0$$

PRUEBA Y ERROR


SOLUCION CONCRETA

$$x_1 = 2$$
 $x_2 = \frac{1}{2}$



Herramientas del TRIZ dentro del ovalo y la fertilización cruzada con otras herramientas fuera del ovalo.

Taguchi y DOE Diseño de experimento

Anàlisis de riesgos

QFD

SOLUCIÓN

Seis Sigma ¿POR BRAINSTORMING?, ¿PENSAMIENTO LATERAL? ¿PRUEBA Y ERROR? ¿SINÉCTICA? ¿?

APQP Planeamiento avanzado de la calidad del producto

Diseño axiomático

AMFE Análisis de modo de fallas y sus efectos DFM Diseño para manufactur ArgenTRIZ

Taguchi y **DOE Diseño** de experimento

> Anàlisis de riesgos

TRIZ

APQP Planeamiento avanzado de la calidad del producto

QFD

Seis Sigma

> Diseño axiomático

AMFE Análisis de modo de fallas y sus efectos

DFM Diseño para manufactur

a

Taguchi y DOE Diseño de experimento

Anàlisis de riesgos

TRIZ

-ARIZ Algoritmo para la resolución de problema inventivo

- Análisis funcionales
- ■Declaración del problema
- Análisis de la causa raíz (zona de conflicto)

Evolución de la tecnología

Diseño

axiomático

SLP

Problemas inventivos

Resolución contradicción física (principio de separación)

- .Separación temporal
- .Separación espacial

Resolución contradicción técnica
.Matriz contradicción Altshuller

.39 parámetros de ingeniería

.Separación entre el sistema y sus partes

Aplicar efecto físico o químico base de dato

76 Soluciones estándares

APQP Planeamie

Seis

Sigma

QFD

Planeamiento avanzado de la calidad del producto Análisis sustanciacampos

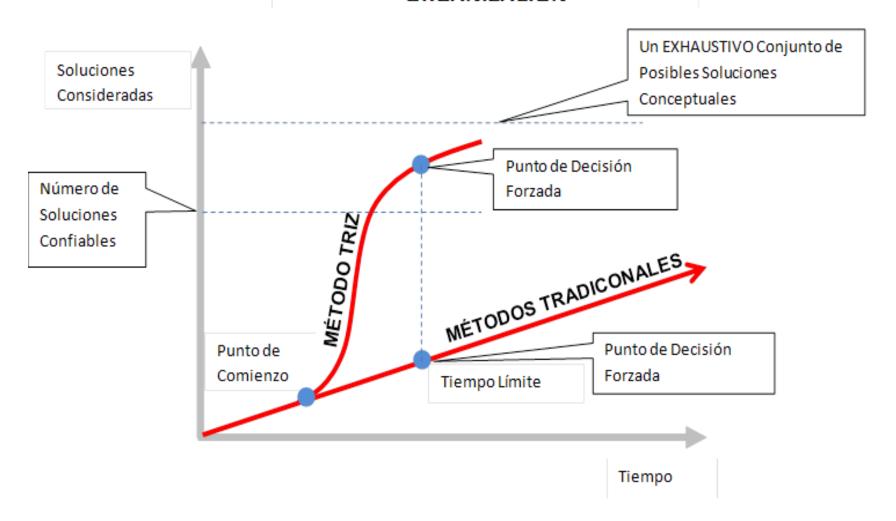
> AMFE Análisis de modo de fallas y sus efectos

DFM Diseño para manufactur

9

LA SOLUCIÓN IDEAL (cero contradicciones)

- ✓ No es compleja
- ✓ No es costosa
- ✓ No emplea tiempo
- ✓ No usa esfuerzo humano
- ✓ No consume energía
- √Y, sin embargo, la función se cumple de manera satisfactoria


TRIZ EN LAS EMPRESAS

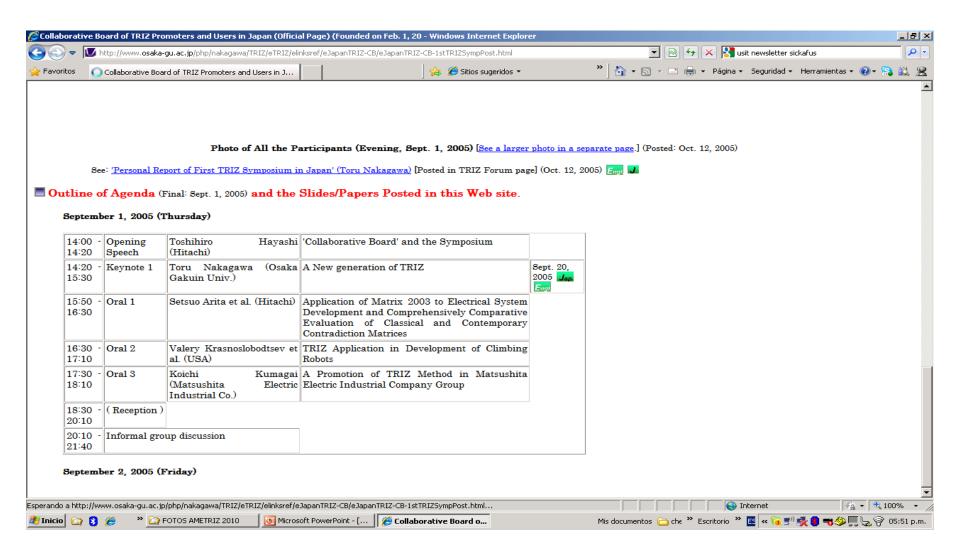
EL CAPITAL INTELECTUAL DE CUALQUIER ORGANIZACIÓN PUEDE INCREMENTARSE, EN GRAN MEDIDA, SI LOS EMPLEADOS, APRENDEN LA APLICACIÓN DE TRIZ, PARA ENFRENTAR PROBLEMAS DE INVENTIVA O INNOVACIÓN TECNOLÓGICA, CONTRIBUYENDO AL ÉXITO DE LA EMPRESA.

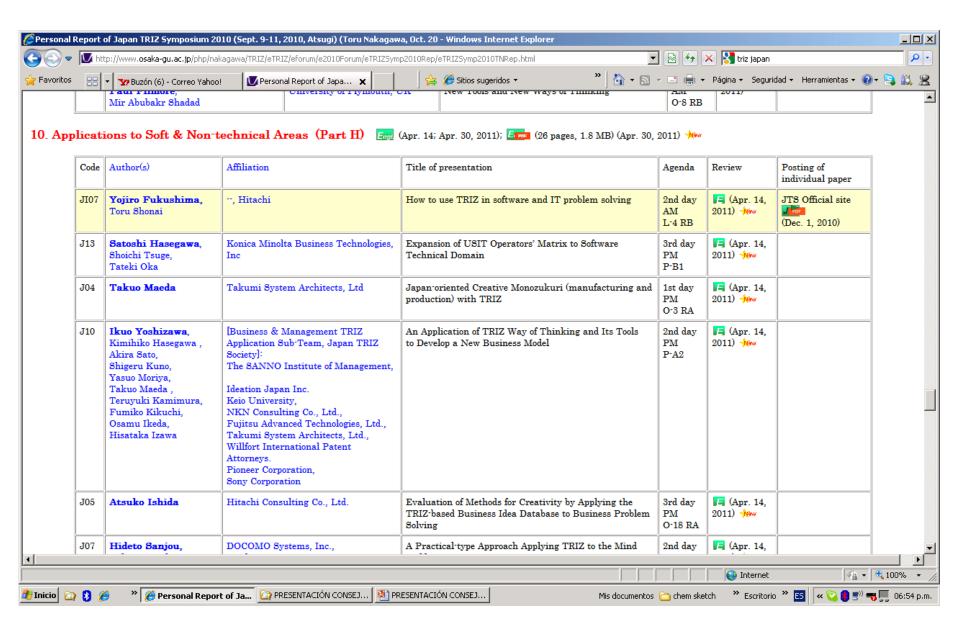
IMPACTO DEL TRIZ EN UNA ORGANIZACIÓN

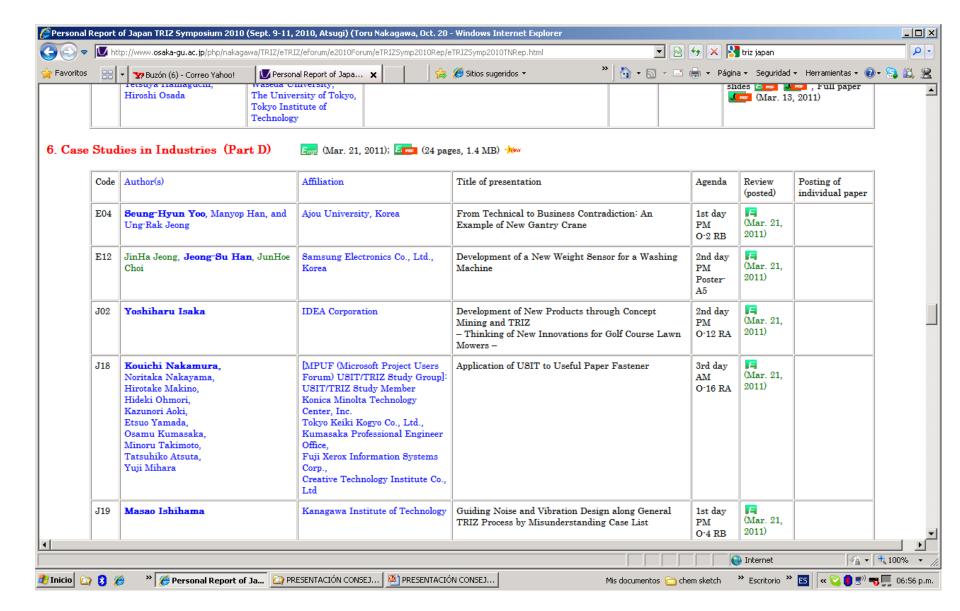
EMPRESAS QUE LO IMPLEMENTAN

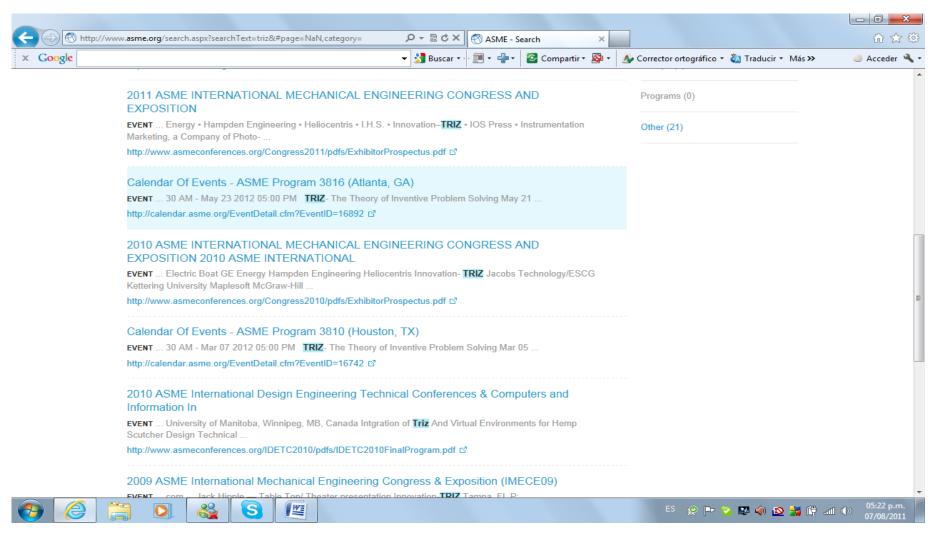
- •GM
- Ford (USIT)
- Toyota
- Dana
- Rockwell
- •TRM
- •Motorola
- Honeywell
- Nortel
- Xerox
- Kodak
- •Mercedes-Benz (wois)
- •BMW (wois)
- •Siemens (wois)
- Volkswagen(Mexico)
- Johnson & Johnson
- Mitsubishi
- Emerson Electric

- Unisys
- Proctor Gramble
- •McDonnell- Douglas
- Allied-Signal
- Boeing
- •NASA
- Lockwell
- Hewlet-Packard
- Lexmark
- •Illinois-work
- •Kimberley- Clark
- •3M
- •Rolls -Royce
- Samsung









TRIZ EN INSTITUCIONES

ENSEÑANZA DEL TRIZ EN EL MUNDO

CHINA

Kai Yang Wayne State
University
National Cheng Kung University
Tainan
Shanghai Jiao Tong University
Chong Qing University
Hebei Industrial University
Northeastern University
Southwest Jiaotong University
Tianjin University
Tsinghua University
Zhejiang University
Chengdu Aircraft Design &
Research Institute (CADI)
Northeastern University

Korea Polytechnic
University
KITECH
LG Cable
Triz Korea Inc

Engineering, 2012, 4, 908-913 http://dx.doi.org/10.4236/eng.2012.412115 Published Online December 2012 (http://www.SciRP.org/journal/eng)

TRIZ: The Enlightenment of the Training Mode of Excellent Chinese Engineers

Yiyang Fan, Yuting Qiu, Xing Zhang

Business School, University of Shanghai for Science and Technology, Shanghai, China Email: fyyqq@usst.edu.cn, klee17@139.com, zstar hr@sina.com

Received October 10, 2012; revised November 11, 2012; accepted November 22, 2012

TRIZ Development Model in China

Author:

Daniel K. Lau, Executive Director, Ralong Business Technology Academy.

Fellow, Institution of Electrical Engineers (IEE), U.K.

Adjunct Professor, University of Electronics Science & Technology of China.

Contact:

Unit 2, 9/F Austin Tower, 22-26 Austin Avenue, Tsim Sha Tsui, Kowloon, Hong Kong.

Tel: (852) 3427 2271 Fax: (852) 3427 2273 Email: daniel.lau@ralong-academy.com

Website: <u>www.ralong-academy.com</u>

Industrial innovation path selection based on TRIZ theory

Xiao Zhou, Yi zhang, Ying Guo, Donghua Zhu

School of Management and Economics, Beijing Institute of Technology,
Beijing, China

Keywords: Technology forecasting, TRIZ, Solar Cells, Tech Mining

Introduction

Technology forecasting is a large research area, including several

Educational Technology Letters, ISSN: 2163-4246 Volume 2, Number 1, June, 2012

Using Innovative Methods Theory Instruction to Deepen Teaching Reform

Su Zhou^{1,a}, Zhengqiu Weng^{2,b}, Lina Zhang^{2,b} and Shujing Lu^{2,b}

¹Shool of Computer and Computing Science, City College of Zhejing University HangZhou, Zhejing Province, China

²Department of Electroincs and Information Technology, City College of WenZhou University

WenZhou, Zhejing Province, China

azs@mail.hz.zj.cn, b{Disweng & zln5688 & haoshu1}@163.com

doi.10.5729/etl.vol2.issue1.68

Keywords: Innovative methods, Creative thinking, TRIZ, Teaching reform.

Educational Technology Letters, ISSN: 2163-4246 Volume 2, Number 1, June, 2012

Using Innovative Methods Theory Instruction to Deepen Teaching Reform

Su Zhou^{1,a}, Zhengqiu Weng^{2,b}, Lina Zhang^{2,b} and Shujing Lu^{2,b}

¹Shool of Computer and Computing Science, City College of Zhejing University

HangZhou, Zhejing Province, China

²Department of Electroincs and Information Technology, City College of WenZhou University

WenZhou, Zhejing Province, China

^azs@mail.hz.zj.cn, ^b{Disweng & zln5688 & haoshu1}@163.com

doi.10.5729/etl.vol2.issue1.68

Keywords: Innovative methods, Creative thinking, TRIZ, Teaching reform.

240. •

CHINESE JOURNAL OF MECHANICAL ENGINEERING Vol. 27, No. 2, 2014

DOI: 10.3901/CJME.2014.02.240, available online at www.springerlink.com; www.cjmenet.com; www.cjmenet.com.cn

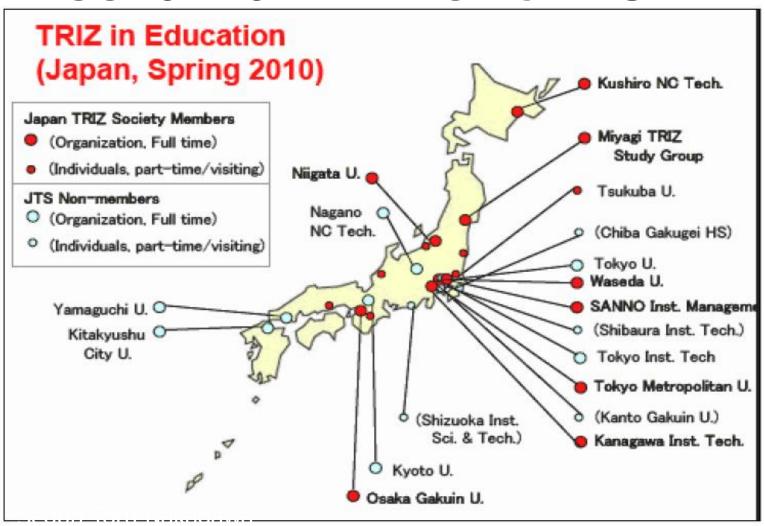
Interactive Training Model of TRIZ for Mechanical Engineers in China

TAN Runhua* and ZHANG Huangao

National Technological Innovation Method and Tool Engineering Research Center, Hebei University of Technology, Tianjin 300401, China

Received April 24, 2013; revised December 29, 2013; accepted January 8, 2014

Report on the 2014 Annual China Conference of the International TRIZ Association (MATRIZ)


The 2014 Annual Chinese Conference of the International TRIZ Association was held on August 16, 2014 in Shanghai, China. The Conference was organized by Shanghai Intellectual Property Training Center, co-organized by the Inner-Mongolia universities' base for Exploitation and Application of Innovation Method.

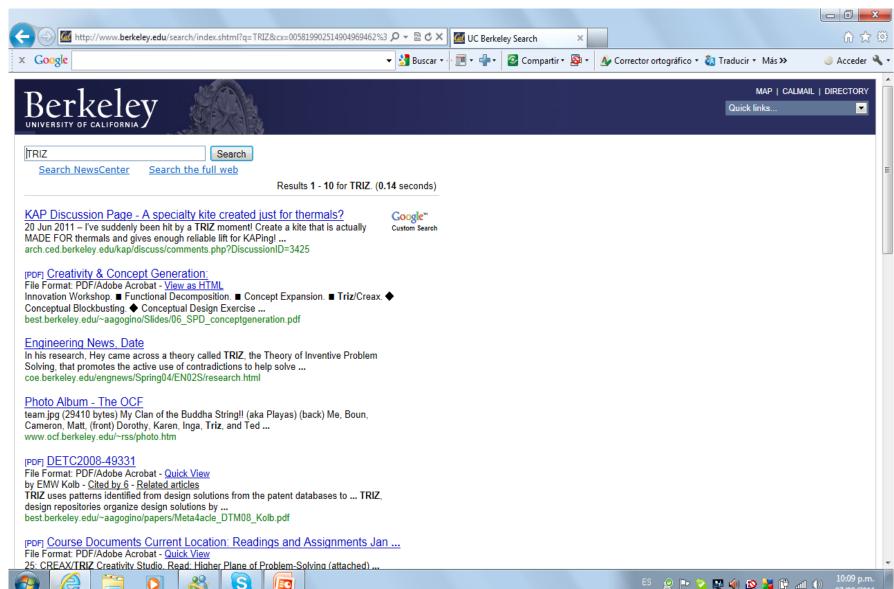
Enseñanza TRIZ en JAPÓN

Institute LUSI-
Centre
University of
Kassel in Quality
and Safety
Control Systems.
University of Leoben
Luger Research &
Spin network
Creax
Università di
Bergamo
Park Galileo:
Museo
Leonardiano
Università di
Firenze
Univesidad
Univesidad Politécnica de

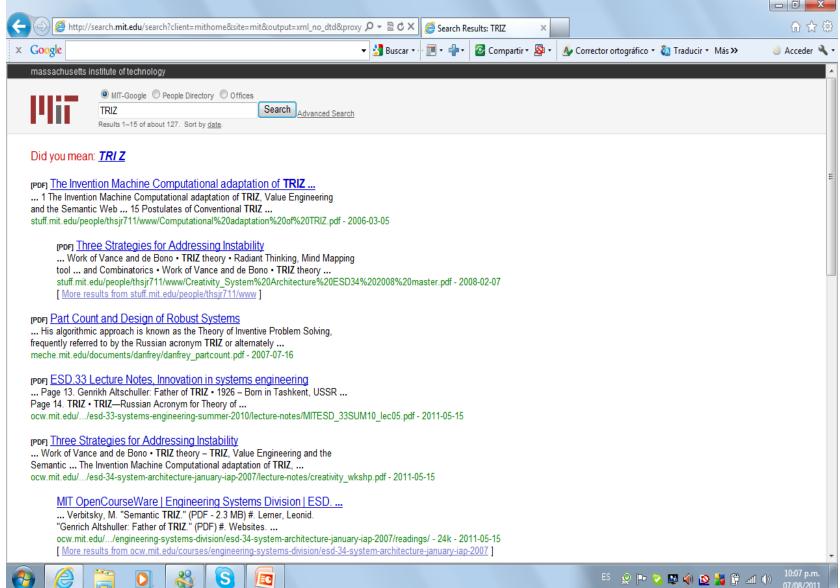
	ESICS: Ecole Superieur
	de la Conception et de
	la fabrication Assistees
	par Ordinateur
	INSA: Engineering
	university
	Ecole Nationale
FRANCIA	Superieure des
	Ingenieurs en Arts
	Chimiques et
	Technologiques
	Institutos politécnico de
	París
	Institutos politécnico de
	Toulouse
	Institutos politécnico de
	Estrasburgo
	Altran Tech
IRLANDA	Eco-innovations

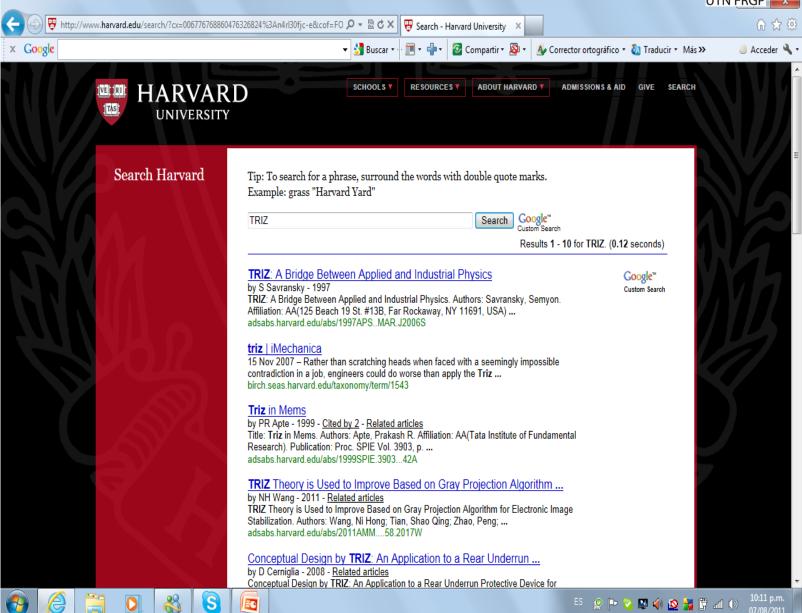
	BMGi Group
	North Carolina State University
	TechniPharm
	Berkeley
	Boston University
	Bradford University
	Cambridge University
	Case Western Reserve University
	Creighton University
	GEN3
ESTADOS	George Mason University
UNIDOS	Indiana's Wayne State University
	IWINT Inc.
	Kent State University
	Michigan University
	MIT
	Pennsylvania State University
	Seatle University
	Standford University
	The Institute for Management and Engineering (TiME),

UCLA		
University College Cork		
University of California,		
University of Detroit,		
University of Minnesota		
University of Plymouth		
University of South Florida		
University of Washington		
University of. Minnesota		
Vanderbilt University, US		
Western Michigan University		
Western Washington University		
Wright State University		
Yale		
Truck & Engine Corp.		
UNIVERSITY OF TEXAS		
NC State University		



POLONIA	Wroclaw University of
	technology
ISRAEL	Ben-Gurion University
	Triz Association of Israel
REINO UNIDO	Darrell Mann
	Systematic Innovation Ltd
	Bolton Institute
	University of Bath,
REPUBLICA	University of Brno
CHECA	University of Liberec
RUMANIA	University of Craiova
RUSIA	DIOL Company
	Tomsk Polytechnic
	University (TPU),
TAIWAN	National Chiao Tung
	University Hsinchu





TRIZ Association of France

Integrating TRIZ into Academia (MIT, European Schools) and Corporate Training (Six Sigma)

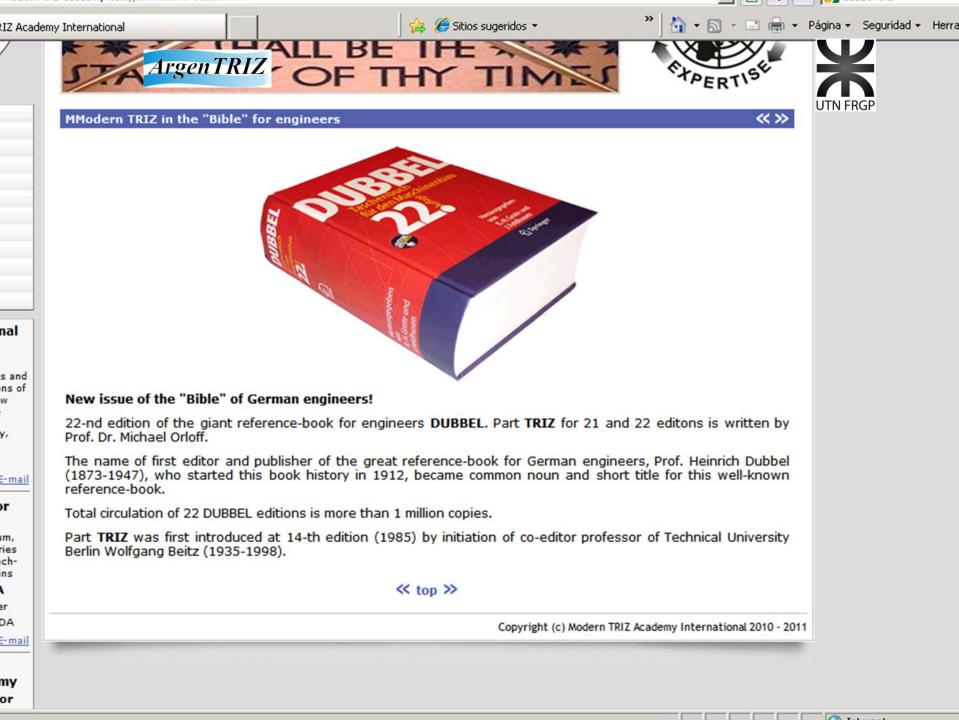
Sergei Ikovenko, PhD, EngD, PE

Invention Machine Corporation & Adjunct Professor, MIT

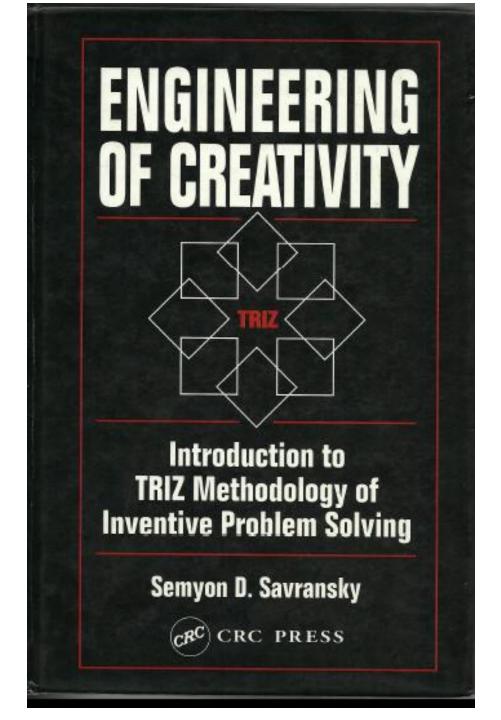
TRIZ EN ARGENTINA

🔽 😽 🗙 🛂 Google ia.net/TRIZ_academic_institutions.pdf 🏠 🔻 🔝 🔻 📑 🕶 Página 🕶 Seguridad 🕶 He Sitios sugeridos ▼ tria.net/TRIZ_academic_institutions.pdf 1 / 11 😑 🕙 69,2% 🕶 Find TRIZ Research TRIZ Application TRIZ Education and Country University Contact person/s Activity Activity Dissemination no Mechanical, electrical and civil Juan Carlos Nishiyama (Engineer) Argentina Universidad tecnologica Nacional yes foundation@altshuller.ru. engineering no Facultad Regional Pacheco (UTN FRGP) mecanica@frgp.utn.edu.ar Argentina yes no Queensland University of Mechanical Australia Technology (Brisbane) Associate Professor Vladis Kosse engineering Course Coordinator for Bachelor of Technology, Mechanical Degree School of Engineering Systems Queensland University of Technology GPO Box 2434, Brisbane Qld 4001 Tel: + 61 07 3864 2866 Fax: +61 07 3864 1469 Email: v.kosse@qut.edu.au yes Courses in electronics and Royal Melbourne Institute of problem solving Technology (based on TRIZ) louri Belski Australia iouri.belski@rmit.edu.au Austria Montauniversitat Leoben Juergen Jantschgi YES YES NO Austria Use of TRIZ in the Zero-Defect-Technical University of Vienna Development Veit Kohnhauser Process Development for Customer Centered Innovative Products kohnhauser@ebwnov.tuwien.ac.at Belgium Vlerick Management School B. Clarysse Bart.Clarysse@vlerick.be PIH (Provencial Industruieel W. de Jonghe Belgium hogeschool) Jo.DeJonghe@kuleuven-kortrijk.be KUL (Katholieke Universiteit Belgium Leuven) no yes yes J. Duflou Joost.Duflou@mech.kuleuven.be Instituto I ecnologico de Brazil Aeronáutica Luis Gonzaga Trabasso gonzaga@ita.br yes no no Zona desconocida

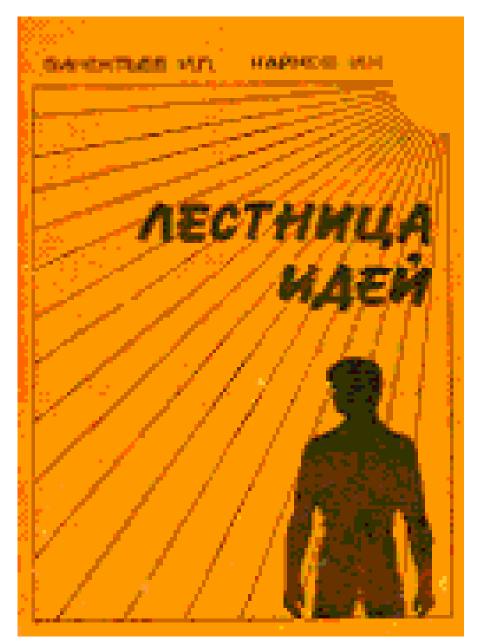
Microsoft PowerPoint - ... | A ETRIA Portal - Windows... | A http://www.etria.net... Mis documentos ← che > Escritorio > ■ ≪ (0.5) ■

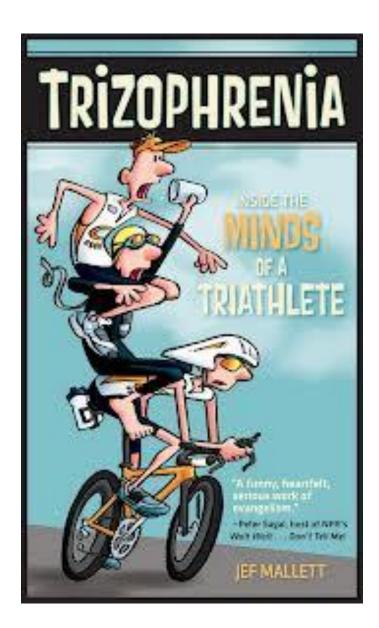

academic_institutions.pdf - Windows Internet Explorer

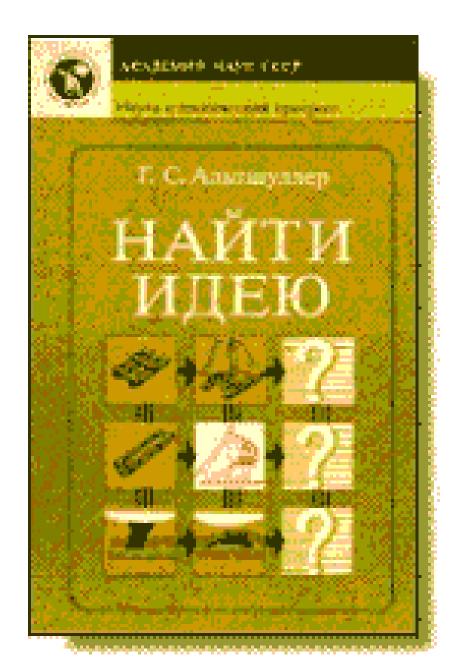
FOTOS AMETRIZ 2010

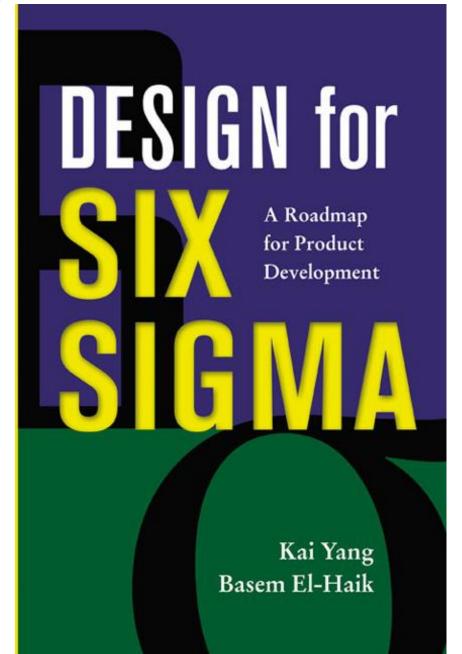

ArgenTRIZ

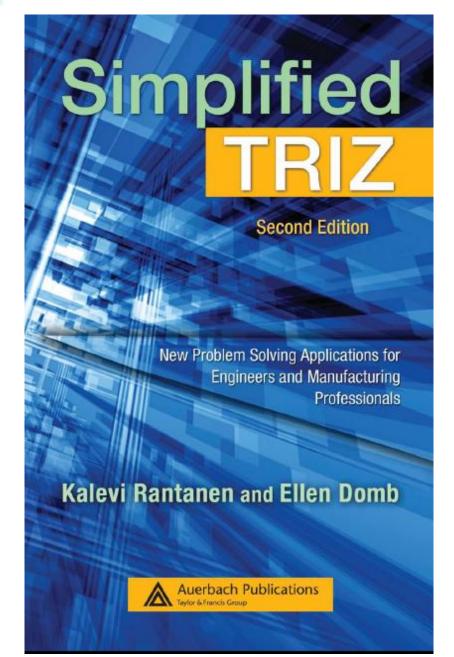
BIBLIOGRAFÍA

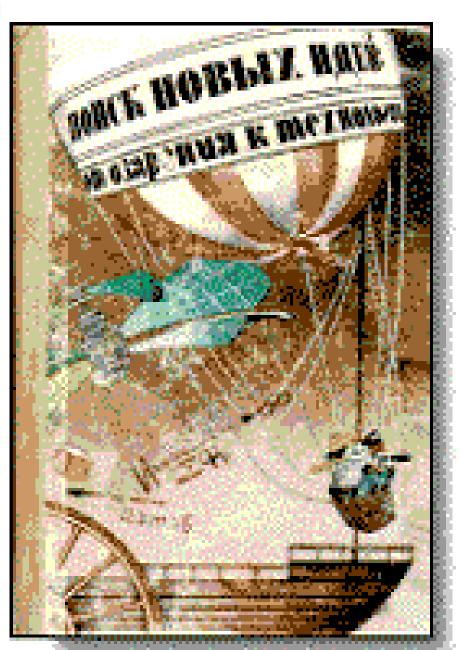

150 patentes y papers







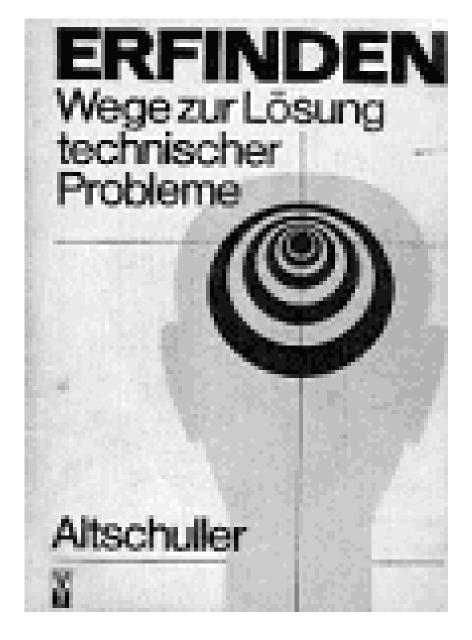




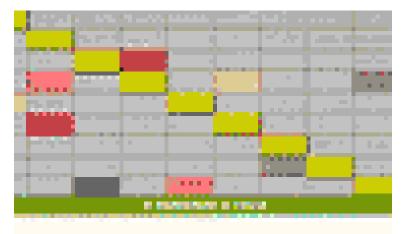
An Introduction to TRIZ

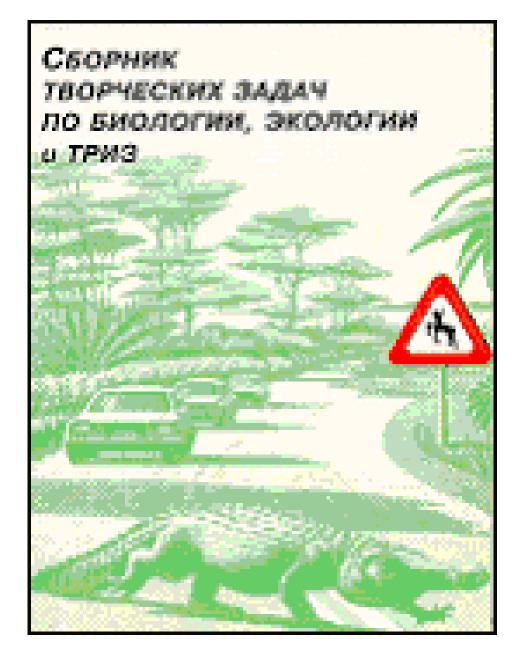
The Russian Theory of Inventive Problem Solving

ter beauty

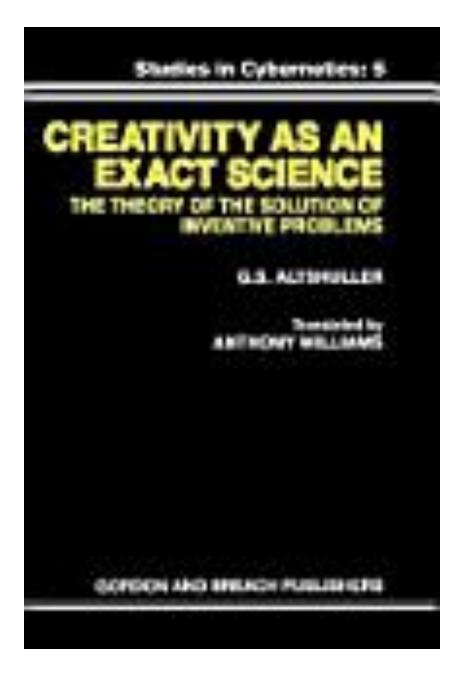


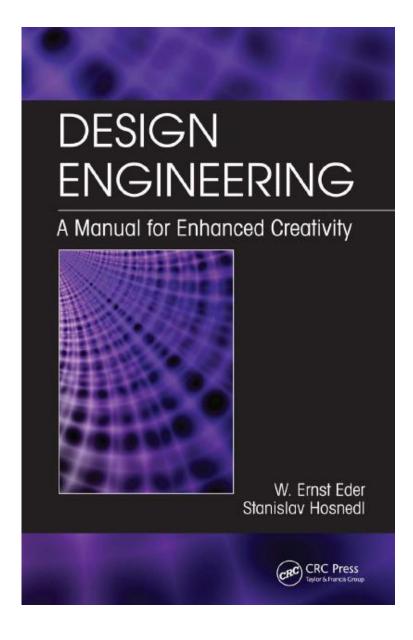
Tools of Classical TRIZ



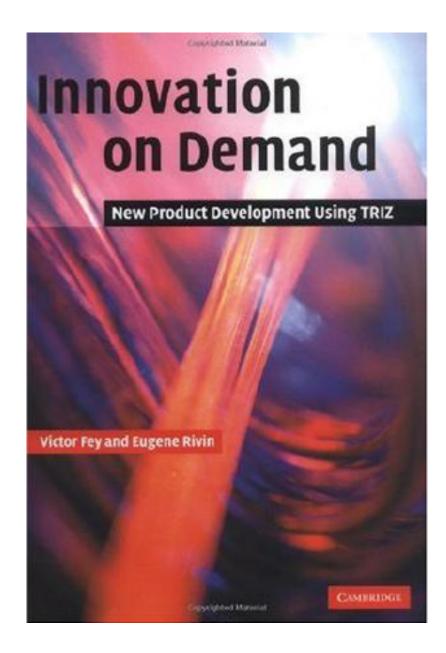

Kreatives Entwickeln und innovetives Problemiösen mit TRIZ / TIPS

Entitionprises blebaile an Section between SEC

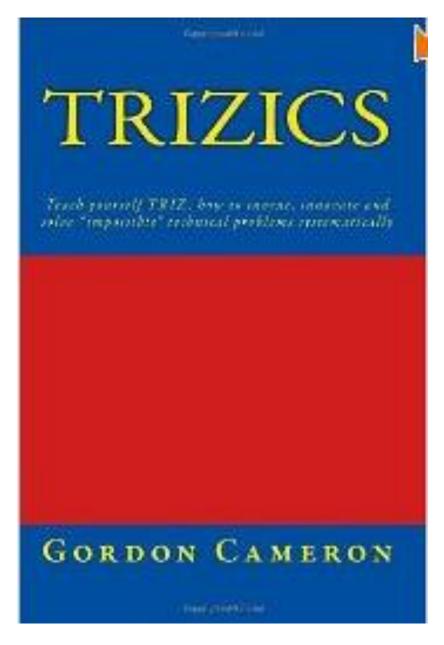




INsourcing Innovation How to Achieve Competitive Excellence Using TRIZ David Silverstein • Neil DeCarlo • Michael Slocum **Auerbach Publications** Taylor & Francis Group

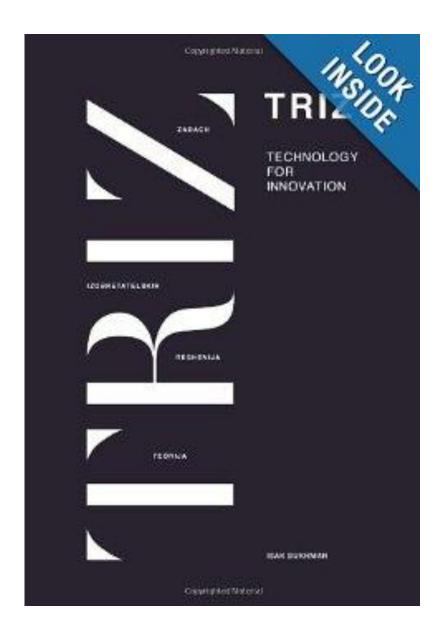


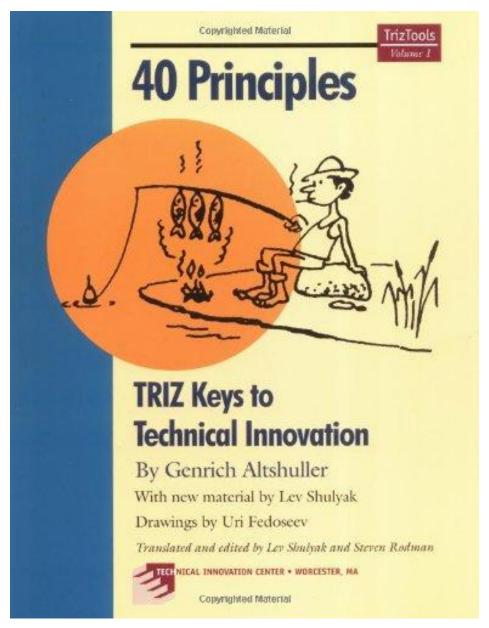
TRIZEL

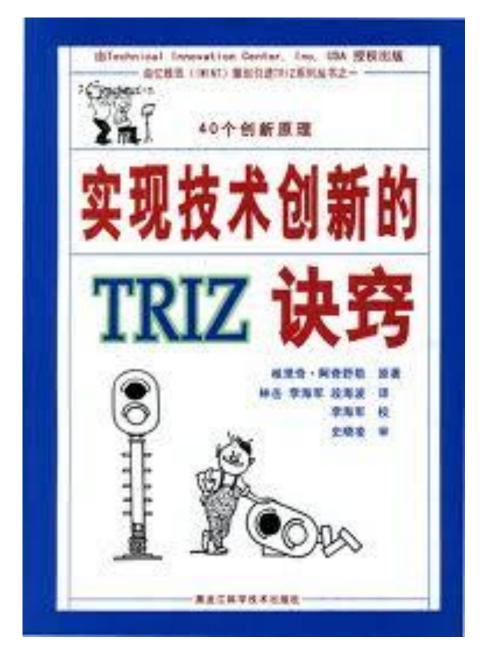

ロシア語で「発明的問題解決の理論」の意味の様文字

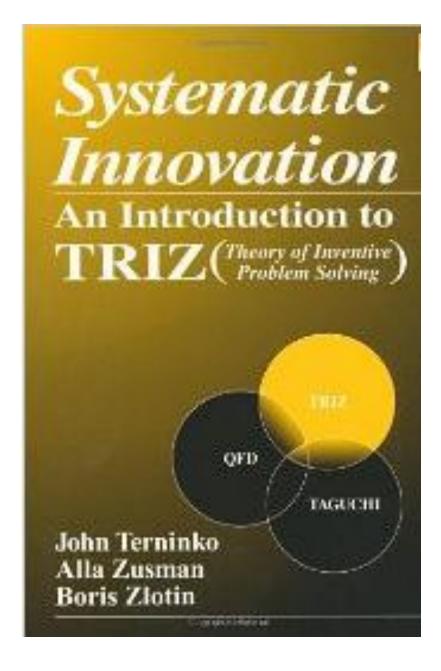
(bortic)機能 Reshanta(研究 bubsidanta(研究 acdochoc 問題) を内閣機 さんたもので、ドナリー・ズノと思うます。 1840年代ロシアの機能を当まり下ルトシュフーが使い し、大学、様の機関、変明やを巻き込んで研究が始めら れてきました。2507年の研究・権所から、研究の関係 を乗っつけ出し、科学科な方法論として体系化されたか のです。日で通の報節ととか、開始問題にも加入車の 来源を中心に関係中で研究が始められています。 学校法人書館大学は、TRIZの研究、教育に書手し、米 間のTRIZ展の機能の対応の Instantational社と我が 国に対ける教育、コンザルテーションの独占技術を背 能しています。 旧り理由まれのTRIZの機は、開発問題「根料コストの 知識、表演品 保護的研究、社会の組 を性別をといった 知識を終まているを機能が多く大きな研究を指げています。

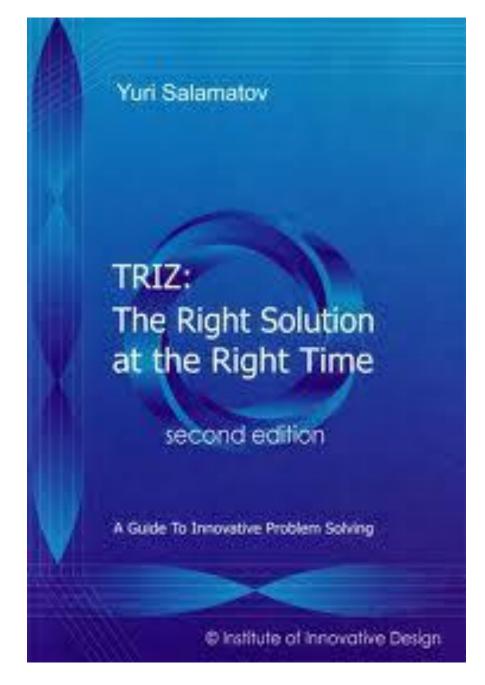
下記のホームページでTFIZ時のご集内をしています。ぜひ、ご利用ください。 http://www.hj.senno.ec.jp



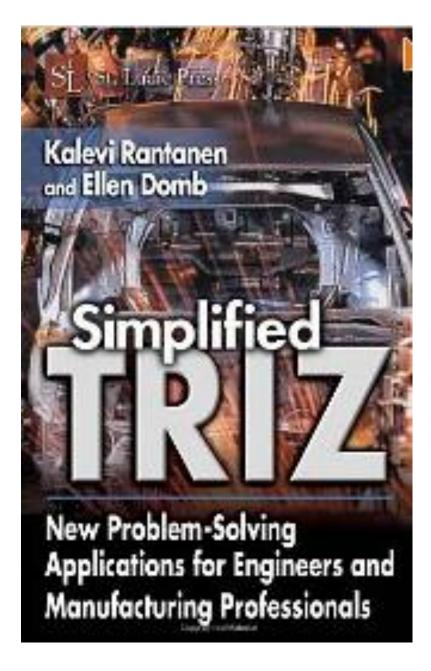


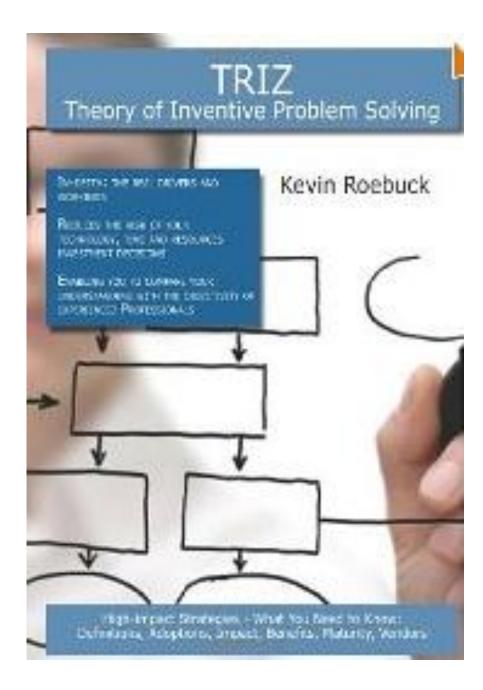


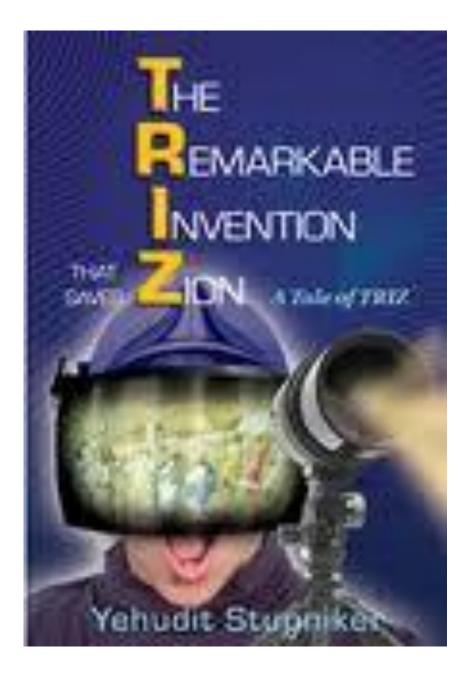


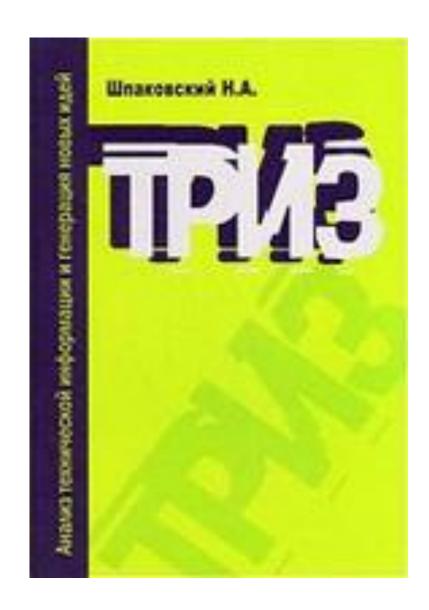


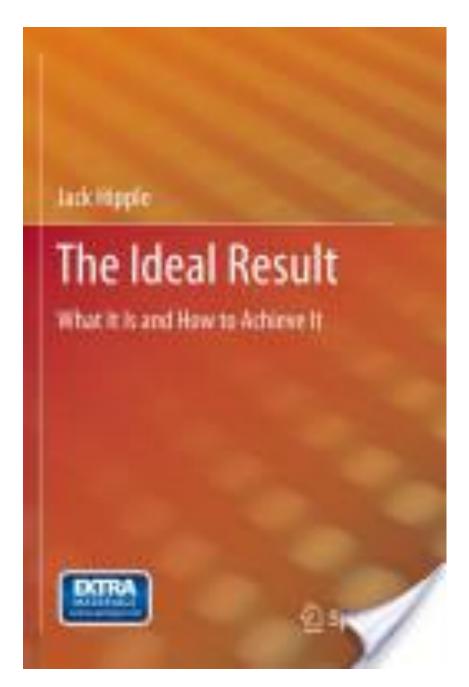


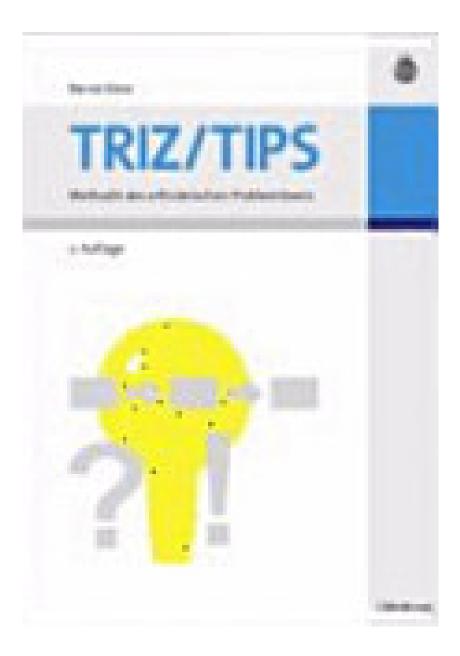


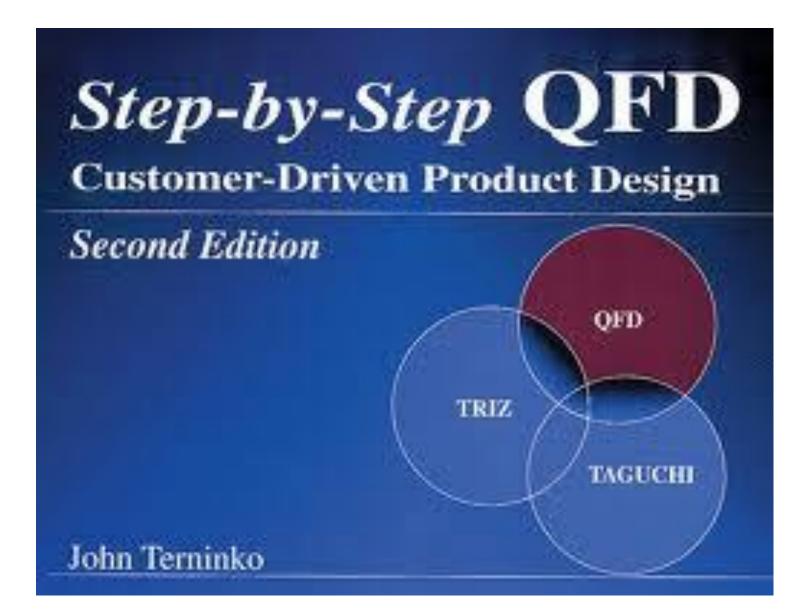




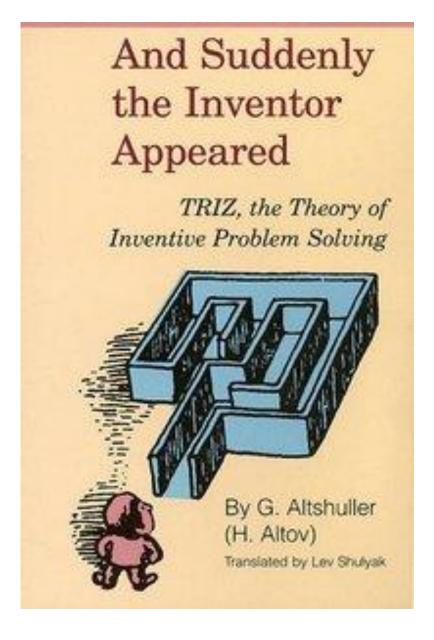


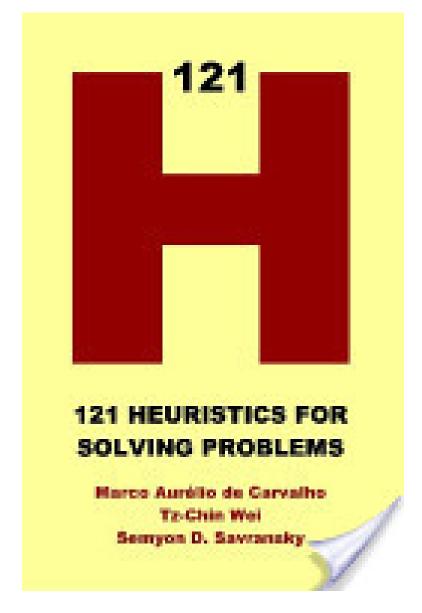


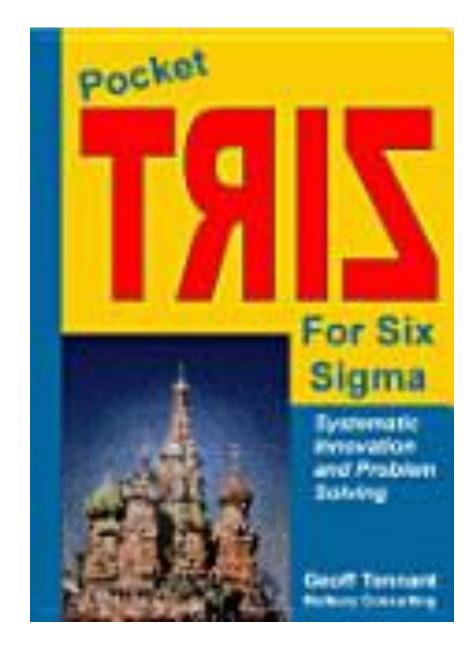


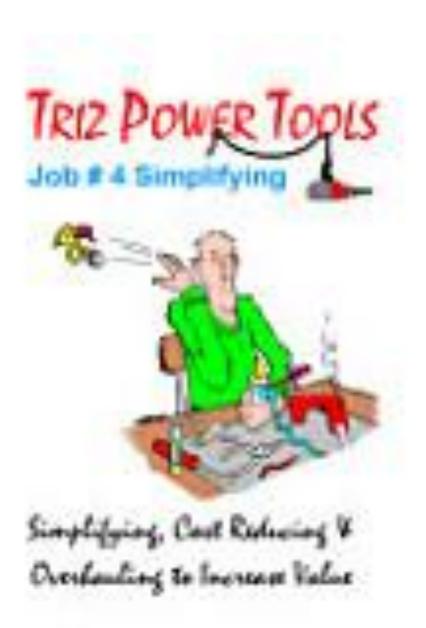


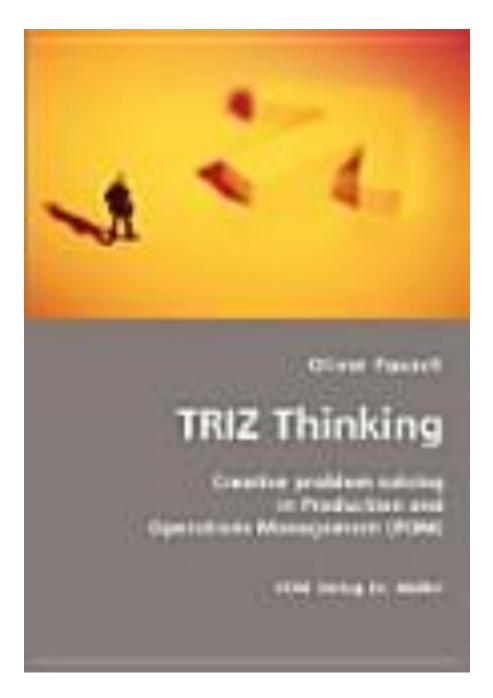
Шпавововий Н. А., Новицаах Е. Л. Практика цепевого изобрегательства

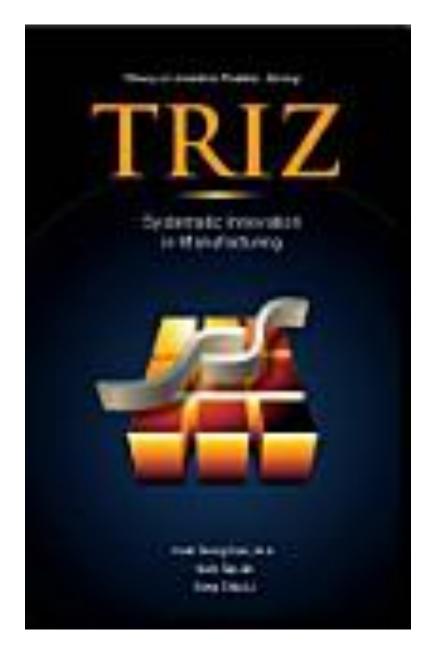


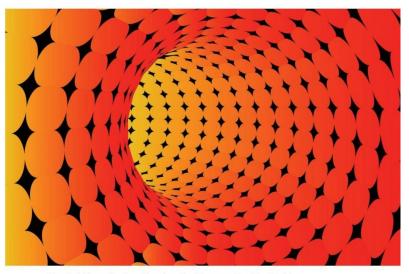






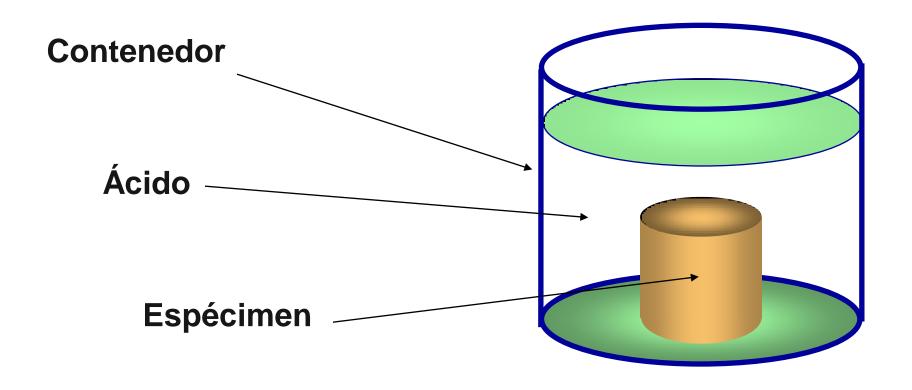




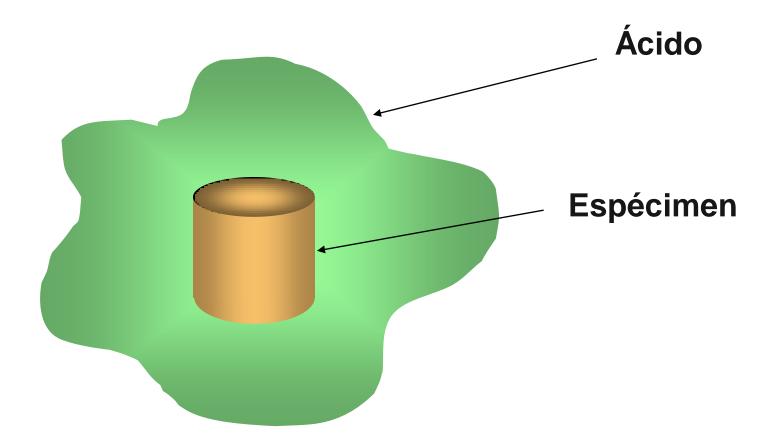


Daniel Hernández Marín · Guillermo Cortés Robles

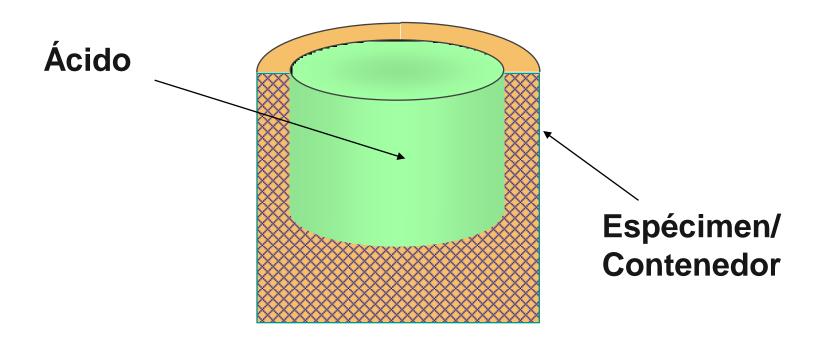
Innovación colaborativa basada en TRIZ

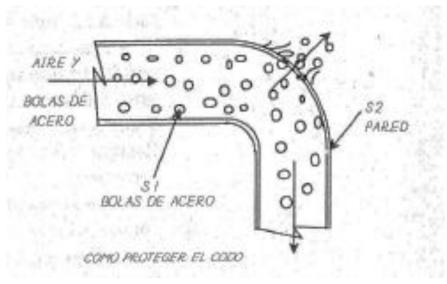

El conocimiento y el trabajo en equipo como estrategia para acelerar la innovación

2da PARTE

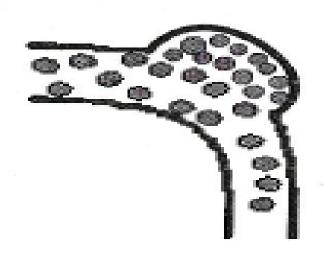


MUNDO CERRADO





EJEMPLO: DESGASTE CODO DURANTE EL TRANSPORTE DE BOLAS


SOLUCIONES COMUNES:

- CODOS REFORZADO
- USAR CODO CAMBIO RÁPIDO
- REDISEÑAR FORMA DEL CODO
- SELECCIONAR OTROS MATERIAL PARA EL CODO

SOLUCIÓN

BREVE HISTORIA DE TRIZ

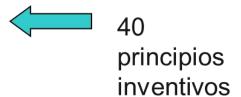
39 PARAMETROS DE INGENIERIA

1. Peso De Objeto Móvil 21. Potencia 2. Peso De Objeto Inmóvil 22. Desperdicio De Energía 3. Longitud De Objeto Móvil **Desperdicio De Sustancia** 23. Longitud De Objeto Inmóvil Pérdida De Información 4. 24. **Área De Objeto Móvil** 5. 25. Perdida De Tiempo **Área De Objeto Inmóvil** Cantidad De Sustancia 6. 26. 7. Volumen De Objeto Móvil **Fiabilidad 27**. 8. Volumen De Objeto Inmóvil 28. Precisión De Medida 9. Velocidad Precisión De Manufactura 29. 10. **Fuerza** 30. Factores Nocivas Que Actúan En El Objeto **Efectos Del Lado Nocivo** 11. Tensión, Presión, 31. **12. Forma** 32. Manufacturabilidad Conveniencia De Uso 13. **Estabilidad De Objeto** 33. Resistencia 14. 34. Reparabilidad **15. Durabilidad De Objeto Móvil** 35. Adaptabilidad 16. **Durabilidad De Objeto Inmóvil** 36. Complejidad De Dispositivo **17. Temperatura** Complejidad De Control 37. Nivel De Automatización 18. Brillo 38. 19. Energía Gastada Por Objeto Móvil 39. **Productividad** 20. **Energía Gastada Por El Objeto** Inmóvil

40 PRINCIPIOS INVENTIVOS

Ν°			
1	Segmentación	21	Saltando
2	Quitar	22	Convertir lo Nocivo en Útil
3	Calidad Local	23	Retroalimentación
4	Asimetría	24	Intermediario
5	Unir	25	Autoservicio
6	Universalidad	26	Copiar
7	Anidar	27	Use Objetos Baratos de Reemplazo
8	Contrapesar	28	Substitución para los Medios Mecánicos
9	Antiacción Preliminar Contrapeso	29	Neumáticos y Hidráulicos
10	Acción Preliminar	30	Membranas Flexibles , Películas delgadas
11	Amortiguar De Antemano	31	Materiales Porosos
12	Equipotencialidad	32	Cambios de Color
13	Reversar Invertir	33	Homogeneidad
14	Esferoidalidad - Curvatura	34	Descartar y Recubrir
15	Dinámica	35	Cambios del Parámetro
16	Acciones Parciales o Excesivas	36	Transiciones de Fases
17	Otra Dimensión	37	Expansión Térmica
18	Vibración Mecánica	38	Oxidantes Fuertes
19	Acción Periódica	39	Atmósfera Inerte
20	Continuidad de Acción Útil	40	Materiales Compuestos

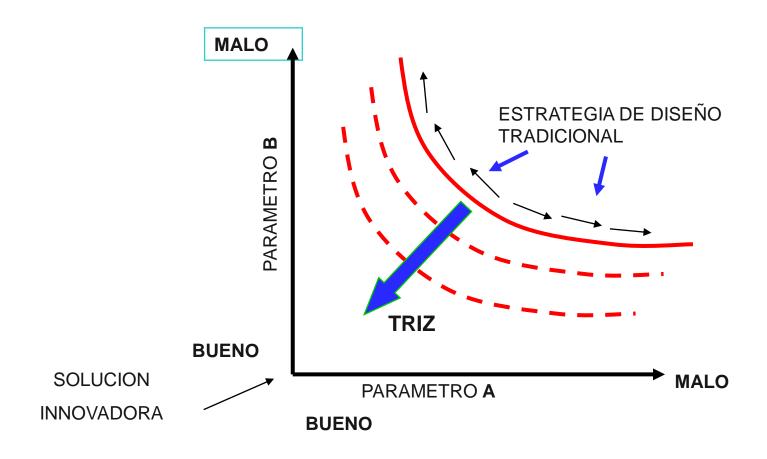
EN OTRAS PALABRAS, LA METODOLOGÍA TRIZ ES COMO TENER MILES DE INVENTORES TRATANDO DE RESOLVER NUESTRO PROBLEMA, APORTANDO LAS SOLUCIONES QUE ELLOS EMPLEARON AL ENFRENTAR UNO SIMILAR.



ä			1	2	3	4	5	6	7	8	9	10	11	12	13
	Undesired Result (Conflict) Feature to Improve		Weight of moving object	Weight of non- moving object	Length of moving object	Length of non- moving object	Area of moving object	Area of non-moving object	Volume of moving object	Volume of non- moving object	Speed	Force	Tension, pressure	Shape	Stability of object
	1	Weight of moving object			15,8, 29,34		29,17, 38,34	SATE VAN COUNTY	29,2, 40,28		2,8, 15,38	8,10, 18,37	10,36, 37,40	35,40	1,35, 19,39
	2	Weight of non- moving object				10,1, 29,35		35,30, 13,2		5,35, 14,2		8,10, 19,35	13,29, 10,18	13,10, 29,14	26,39, 1,40
	3	Length of moving object	8,15, 29,34				15,17, 4		7,17, 4,35		13,4, 8	17,10, 4	1,8, 35	1,8, 10,29	1,8, 15,34
	4	Length of non- moving object		35,28, 40,29				17,7, 10,40		35,8, 2,14		28,10	1,14, 35	13,14, 15,7	39,37, 35
	5	Area of moving object	2,17, 29,4		14,15, 18,4				7,14, 17,4		29,30, 4,34	19,30, 35,2	10,15, 36,28	5,34, 29,4	11,2, 13,39
	6	Area of non-moving object		30,2, 14,18	CATALOGUE SERVICE	26,7, 9,39						1,18, 35,36	10,15, 36,37		2,38
	7	Volume of moving object	2,26, 29,40		1,7, 4,35		1,7, 4,17				29,4, 38,34	15,35, 36,37	6,35, 36,37	1,15, 29,4	28,10, 1,39
	8	Volume of non- moving object		35,10, 19,14	19,14	35,8, 2,14						2,18, 37	24,35		34,28, 35,40
	9	Speed	2,28, 13,38		13,14, 8		29,30, 34		7,29, 34			13,28, 15,19	6,18, 38,40	35,15, 18,34	28,33, 1,18
	10	Force	8,1, 37,18	18,13, 1,28	17,19, 9,36	28,10	19,10, 15	1,18, 36,37	15,9, 12,37	2,36, 18, 37	13,28, 15,12		18,21, 11	10,35, 40,34	35,10, 21
	11	Tension, pressure	10,36, 37,40	13,29, 10,18	35,10, 36	35,1, 14,16	10,15, 36,25	10,15, 35,37	6,35, 10	35,24	6,35, 36	36,35, 21		35,4, 15,10	35,33, 2,40
	12	Shape	8,10, 29,40	15,10, 26,3	29,34, 5,4	13,14, 10,7	5,34, 4,10		14,4, 15,22	7,2, 35	35,15, 34,18	35,10, 37,40	34,15, 10,14		33,1, 18,4
	13	Stability of object	21,35, 2,39	26,39, 1,40	13,15, 1,28	37	2,11, 13	39	28,10, 19,39	34,28, 35,40	33,15, 28,18		2,35, 40	22,1, 18,4	
	14	Strength	1,8, 40,15	40,26, 27,1	1,15, 8,35	15,14, 28,26	3,34, 40,29	9,40, 28	10,15, 14,7	9,14, 17,15	8,13, 26,14	10,18, 3,14	10,3, 18,40	10,30, 35,40	13,17, 35
	15	Durability of moving object	19,5, 34,31		2, 19, 9		3,17, 19		10,2, 19,30		3, 35, 5	19,2, 16	19,3, 27	14,26, 28,25	13,3, 35
	16	Durability of non- moving object		6,27, 19,16		1,10, 35			11	35,34, 38				= 111	39,3, 35,23
39 parámetr	os de perature		36,22, 6,38	22,35, 32	15,19, 9	15,19, 9	3,35, 39,18	35,38	34,39, 40,18	35,6, 4	2,28, 36,30	35,10, 3,21	35,39, 19,2	14,22, 19,32	1,35, 32
mejoran	ue	itness	19,1 32	2,35, 32	19,32, 16		19,32, 26	1.0	2,13, 10		10,13. 19	26,19, 6		32,30	32,3, 27
	19	Energy spent by moving object	12,18, 28,31		12,28		15,19, 25		35,13, 18		8,15, 35	16,26, 21,2	23,14, 25	12,2, 29	19,13, 17,24
	20	Energy spent by non-moving object		19,9, 6,27								36,37		ar objecti	27,4, 29,18

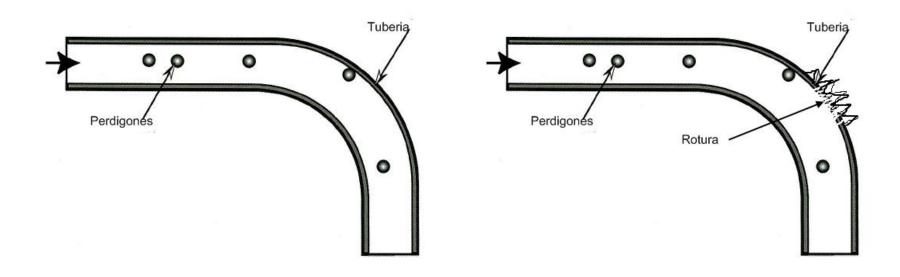
CONTRADICCIONES

"LAS CONTRADICCIONES OCURREN CUANDO MEJORAMOS UN PARÁMETRO O UNA CARACTERÍSTICA DE INGENIERÍA EN UN SISTEMA, AFECTANDO A OTRA CARACTERÍSTICA O PARÁMETROS DE INGENIERÍA."


CONTRADICCIONES TÉCNICAS: Una acción es consecuentemente útil y perjudicial.

Ejemplo 1: Si reduzco costos reduciendo el tensioactivo de un detergente por dilución, voy en detrimento de su viscosidad.

Ejemplo 2: Si en una pieza de chapistería deseo reducir su peso, debo reducir el espesor, en detrimento de su resistencia mecánica.


CONTRADICCIÓN TÉCNICA

Ejemplo

EJEMPLO ANTERIOR: TRANSPORTE DE PERDIGÓN DE ACERO EN TUBERÍA PLÁSTICA

- SUBSISTEMA TÉCNICO: TUBOS Y CODOS PLÁSTICO
- OBJETIVOS TÉCNICOS: MOVER NEUMÁTICAMENTE LOS PERDIGONES DE ACERO LO MAS RÁPIDO POSIBLE
- CONFLICTO: LOS PERDIGONES DE ACERO DESTRUYE EL CODO
- SOLUCIONES COMUNES: CODOS REFORZADO, USAR CODO CAMBIO RÁPIDO, REDISEÑAR FORMA DEL CODO, SELECCIONAR OTROS MATERIAL PARA EL CODO

- INCREMENTAR LA VELOCIDAD DE LOS PERDIGONES (PARÁMETRO QUE MEJORA) PARÁMETRO DE INGENIERÍA (9)
- LA ESTABILIDAD DE LA COMPOSICIÓN DEL OBJETO (PARÁMETRO QUE EMPEORA) PARÁMETRO DE INGENIERÍA (13)- CAPACIDAD DEL SUBSISTEMA A MANTENER SU INTEGRIDAD, ESTABILIDAD DEL ELEMENTO DEL SUBSISTEMA EN EL TIEMPO (DESGASTE, DESCOMPOSICIÓN QUÍMICA)

				ATRIBUTO (QUE EMP	'EOR	Α			
		9 Velocidad	10 Fuerza	11 Tensión/Presión	12 Forma	13 Estabilidad de la composición		14 Resistencia o fortaleza	15 Tiempo de acción del objeto móvil	16 Tiempo de acción del objeto estacionario
	1 Peso del objeto móvil	2,8,15,38	8,10,18,37	10,36,37,40	10,14,35,40	1,35		28,27,18,40	5,34,31,35	
MEJORA	2 Peso del objeto estacionario		8,10,19,35	13,29,10,18	13,10,29,14	26,3	,1,40	28,2,10,27		2,27,19,6
	3 Longitud del objeto móvil	13,4,8	17,10,4	1,8,35	1,8,10,29	1,8, 5,34		8,35,29,34	19	
	4 Longitud del objeto estacionario		28,10	1,14,35	7,13,14,15	35,: 7,39		14,15,28,26		1,40,35
	5 Årea del objeto móvil	29,30,4,34	19,30,35,2	10,15,36,28	5,34,29,4	11,2 13,39		3,15,40,14	6,3	
	6 Àrea del objeto estacionario		1,18,35,36	10,15,36,37		2 38		40		2,10,19,30
	7 Volumen del objeto móvil	29,4,38,34	15,35,36,37	6,35,36,37	1,4,15,29	28,10,	,39	9,14,15,7	6,35,4	
	8 Volumen del objeto estacionario		2,18,37	24,35	7,2,35	34,16	3 ,40,	9,14,15,17		35,34,38
	9 Velocidad		13 28 15 19	6 18 38 40	35 15 15 M	28,33,1,18		8,3,26,14	3,19,35,5 19,2	
QUE	10 Fuerza	13,28,15,12		18,21,11	10,34,3,40	35,10,21				
	11 Tensión/ Presión	6,35,36	36,35,21		35,4,15,10	35,33,2,40				
\succeq	12 Forma	35,15,34,18	35,10,37,40	34,15,10,14		33,1,18,4		,1,18,4 30,14,10,40		
ATRIBUTO	13 Estabilidad de la composición	33,15,28,18	10,35,21,16	2,35,40	22,1,18,4			17,9,15	13,27,10,35	39,3,35,23
	14 Resistencia o fortaleza	8,13,26,14	10,18,3,14	10,3,18,40	10,30,35,40	13,17,35			27,3,26	
	15 Tiempo de acción del objeto móvil	3,35,5	19,2,16	19,3,27	14,25,26,28	13,3,35		27,3,10		

1. Segmentación

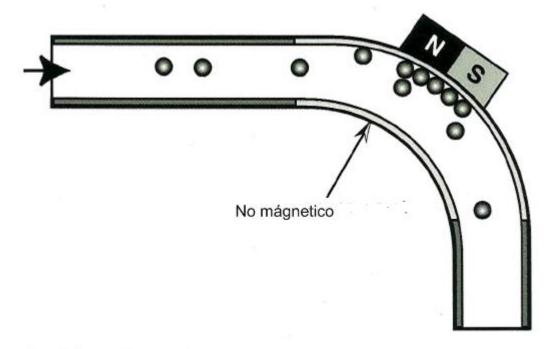
- a. Divida un objeto en partes independientes
- b. Cree un objeto seccionado
- c. Incremente un grado la segmentación de un objeto

33. Homogeneidad

- a. Haga que los objetos interactúen con un objeto primario fuera del mismo material que está cerca de el en comportamiento Ejemplo:
- 1. La superficie de un alimentador de granos abrasivos está hecho del mismo material que pasa por el alimentador permitiendo que tenga una restauración continua de la superficie sin que se desgaste.

18. Vibración mecánica:

- a. Ponga un objeto en oscilación
- b. Si la oscilación existe, incremente su frecuencia, aun tanto como hasta la ultrasónica
- c. Use la frecuencia de resonancia
- d. En lugar de vibraciones mecánicas, use piezovibradores
- e. Use vibraciones ultrasónicas en conjunción con un campo electromagnético

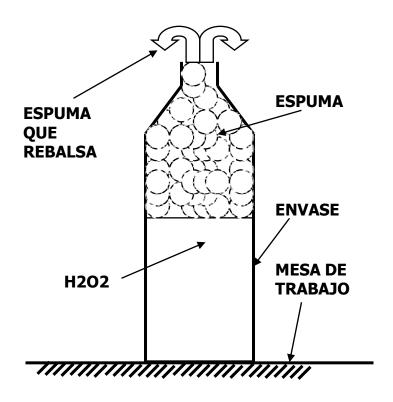

ELIGIENDO EL PRINCIPIO 28

- 28.- REMPLAZAR UN SISTEMA MECÁNICO CON OTRO, CON LAS SIGUIENTES OPCIONES:
- A).- SUSTITUIR EL SISTEMA MECÁNICO, CON UNO ÓPTICO, ACÚSTICO O TÉRMICO, EJEMPLO: EN ING. AMBIENTAL, EL OBSOLETO MUESTREO AMBIENTAL DE CONTAMINANTES EN EL AIRE HA SIDO REEMPLAZADO CON SISTEMAS ULTRAVIOLETA O INFRARROJO.
- B).- EMPLEAR CAMPOS MAGNÉTICOS, ELÉCTRICOS O ELECTROMAGNÉTICOS QUE ACTÚEN CON EL SISTEMA TECNOLÓGICO, EJEMPLO: EN LOS MODERNOS TRENES DE ALTA VELOCIDAD SE UTILIZAN CAMPOS MAGNÉTICOS QUE EVITAN LA FRICCIÓN DEL VEHÍCULO CON LOS RIELES.
- C).- USO DE CAMPOS MAGNÉTICOS CON PARTÍCULAS FERROMAGNÉTICAS, EJEMPLO: CUANDO SE QUIERE CALENTAR UNA SUSTANCIA, SE LE AGREGAN PARTÍCULAS FERROMAGNÉTICAS Y, EMPLEANDO UN CAMPO MAGNÉTICO EXTERNO, LAS PARTÍCULAS SE CALIENTAN TRANSMITIENDO DICHO CALOR A LA SUSTANCIA.

 Sugiere ubicar un imán en el codo en el codo para amarrar perdigones de aceros al material plástico formando una manta protectora

PROBLEMA DEL EMBOTELLADO DE AGUA OXIGENADA

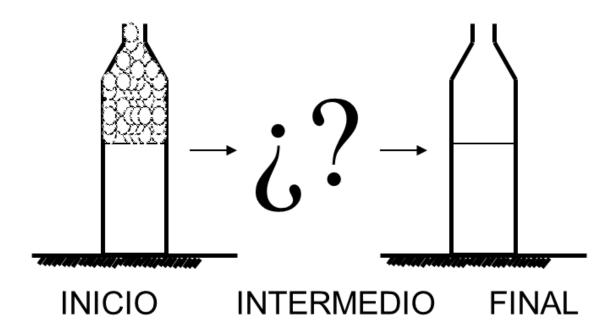
Resumen: Existen varios procesos industriales en los cuales se manejan soluciones acuosas en las que se genera espuma indeseable en la superficie. La espuma produce pérdida de tiempo productivo lo que hace necesario eliminarla rápidamente. Con ese objetivo se aplica una herramienta del TRIZ, la "Matriz de Contradicciones".



1. Introducción: La generación de espuma sobre la superficie de soluciones acuosas es un problema que genera ineficiencias y pérdida de tiempo en los procesos y por lo tanto es necesario resolver mediante alternativas innovadoras. El a exponer se originó en una industria fabricante de agua oxigenada (H2O2) en México.

2. Desarrollo del tema

2.1 Descripción particular del problema: Durante la producción del agua oxigenada se genera una solución supersaturada de oxígeno, el cual fácilmente genera espuma indeseable sobre la superficie del líquido y sobre todo en las etapas de trasvasado de un recipiente a otro. Dicha espuma permanece sobre el líquido durante un lapso de tiempo que varía entre 4 y 8 minutos dependiendo del volumen manejado y del tipo de recipiente.



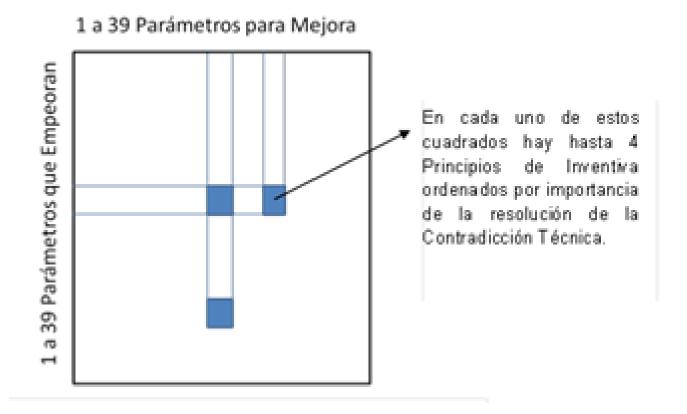
Ese tiempo se considera perdido ya que los operarios deben esperar a que desaparezca la espuma para continuar con el proceso regular. Otros factores que afectan la generación de espuma son: Presión sobre la superficie del agua oxigenada, que en este caso fue la atmosférica y la temperatura del agua oxigenada.

2.2 Descripción del problema: La espuma solamente se produce en la superficie del líquido, "zona de conflicto", durante el proceso de trasvase de un recipiente a otro y como objetivo se plantea eliminarla en el menor tiempo posible.

3. Propuestas de solución 3.1 Mediante la aplicación de la "Matriz de Contradicción"

Parámetros para resolver el problema Atributo o atributos que deben mejorarse:

Nro 39, Capacidad o productividadNro 25, Evitar la pérdida de tiempo


Atributo o atributos que empeoran:

Nro 9, Velocidad. Lo que significa pérdida de velocidad de los procesos y disminución en la productividad.

Nro 23, Pérdida de sustancia. Principalmente en el proceso del agua oxigenada, en el cual se pierde parte del oxígeno.

Esquema de la "Matriz de Contradicciones".

Solución: Primera combinación para resolver el problema: Atributos, 39 (Capacidad productiva) vs 9 (Velocidad). La Matriz de Contradicción no sugiere ningún principio, lo que significa que se debe emplear otra herramienta más poderosa del TRIZ como ser las relaciones "sustancia campo" (no lo emplearemos en el presente trabajo).

Segunda combinación: 39 (Capacidad productiva) vs 23 Pérdida de sustancia). La matriz de contradicción sugiere: **10**, **23**, **28** y **35**.

- **10.- Acción anticipada.** No parece aplicarse a este problema.
- 23.- Retroalimentación. Significa llevar a cabo algún tipo de acción a medida que se genera la espuma. Esto significaría colocar un sensor que mida el espesor de la misma y en ese momento tomar las medidas necesarias para eliminar el problema. En el caso que se estudia, el propio operador del equipo es quién decide el momento en el que se debe aplicar la solución como se describe más adelante.

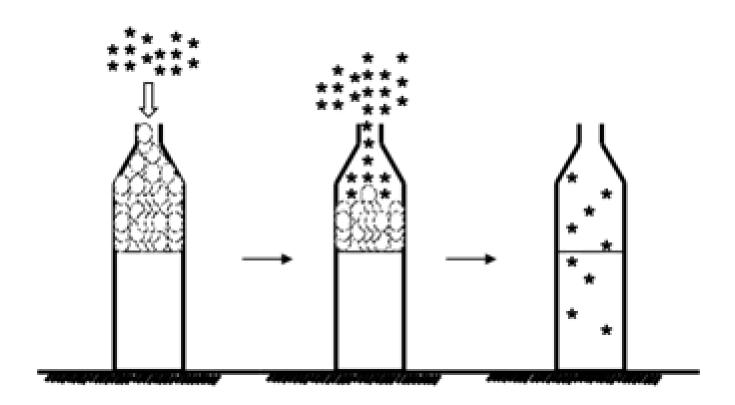
28.- Reemplazar un sistema mecánico con otro sistema.

Para atenuar el problema de la generación de espuma en el proceso de trasvasado del agua oxigenada, se recurrió, en primer lugar, a llenar los recipientes por la parte inferior disminuyendo un poco el problema pero no eliminándolo.

- Última combinación: 25 (Evitar pérdida de tiempo) vs 23 (Pérdida de sustancia). Sugerencias 10, 18, 35 y 39.
- **10.- Acción anticipada.** No parece aplicarse a este problema.
- **18.- Vibración mecánica.** Es decir que por medio de algún sistema que genere ondas sonoras es posible eliminar la espuma.
- **35.- Transformación de propiedades.** Se repite, lo cual significa que es muy probable que proporciones la solución, como así se demostró.
- **39.- Ambiente inerte.** No parece tener aplicación en este caso.

- a) Cambio del estado físico de algún componente del sistema tecnológico.
 - b) Cambio de concentración o densidad.
 - c) Cambio de temperatura.
 - d) Cambio de grado de flexibilidad

- a) Para limpiar por erosión mecánica, piezas metálicas sin que el polvo limpiador deje trazas, se usa polvo de bióxido de Carbono ("hielo seco") que una vez cumplida su misión limpiadora se evapora y desaparece sin dejar rastro.
- b) El caso ya visto del agua de una piscina de clavados en la cual se hace burbujear aire, reduciendo su densidad y así protegiendo a los clavadistas contra alguna lesión al efectuar un mal clavado.
- c) Mantener a baja temperatura las muestras médicas de tejidos para su posterior análisis.



- **35.- Transformación de propiedades.** Es una de las soluciones que se estableció. Mediante un sistema de boquillas de aspersión, se inyectó agua oxigenada fría, sobre la espuma directamente en el momento que se formaba. Su rápida eliminación se debió a dos procesos:
- **a)** El propio impacto de las pequeñas gotas de agua, destruyen las burbujas de aire o de oxígeno.
- **b)** La reducción de la temperatura en la superficie del líquido evitaría la pérdida de gas y por lo tanto el volumen de espuma generado es menor. Segunda ronda de contradicciones, 25 vs 9. Sugerencias: no las hay.

Solución ya en funcionamiento con bastante éxito: Aplicar agua oxigenada fría, sobre la superficie del líquido en el momento en que se forma la espuma, mediante un aspersor simple como el empleado para regar agua sobre el césped.

CONTRADICCIÓN TÉCNICA

FORMACIÓN DE ELECTRODOS DE CONDENSADOR TRENCH.

PROBLEMA: Aumentar la capacidad de un condensador oblea de silicio (mejora) implica aumentar su tamaño (empeoramiento).

Por otro lado si se disminuye la capacidad (empeoramiento) disminuye el tamaño del condensador (mejora).

39- Productividad/Capacidad: Número de funciones o de operaciones que un objeto lleva a cabo por unidad de tiempo. Puede incluirse producción por unidad de tiempo o costo por unidad de tiempo.

33- Facilidad de operación: Simplicidad en la operación de un objeto o un sistema. Entre menos componentes o etapas tiene un objeto o un proceso es de más fácil operación.

CARACTERÍSTICA QUE EMPEORA									
		Conv	33 eniencia uso	34 Facilidad o dificultad para	35 Adaptabilidad	36 Complejidad de un aparato	37 Complejidad de control	38 Nivel de automatización	39 Capacidad y/o productividad
ARACTERÍSTICA QUE MEJORA	21 Potencia	10	26,35	reparar 2,10,34,35	17,19,34	19,20,30,34	16,19,35	2,17,28	28,34,35
	22 Pérdida de energía		2,35	2,19	11,10,04	7,23	3,15,23,35	2	10,28,29,35
	23 Pérdida de sustancia	2,24	,28,32	2,27,34,35	2,10,15	10,24,28,35	10,13,18,35	10,18,35	10,23,28,35
	24 Pérdida de información	2	2,27				33,35	35	13,15,23
	25 Pérdida de tiempo	4,1(,28,34	1,10,32	28,35	6,29	10,18,28,32	24,28,30,35	
	26 Cantidad de sustancia	10,2	,29,35	2,10,25,32	3,15,29	3,10,13,27	3,18,27,29	8,35	3,13,27,29
	27 Confiabilidad	17,	27,40	1,11	8,13,24,35	1,13,35	27,28,40	11,13,27	1,29,35,38
	28 Precisión en la medición	1,13	,17,34	1,11,13,32	2,13,35	10,27,34,35	24,26,28,32	2,10,28,34	10,28,32,34
	29 Precisión en la	1,23	32,35	10,25		2,18,26		18,23,26,28	10,18,32,39
	manufactura								
	30 Factores dañinos actuando, desde el exterior, sobre el objeto	2,2	,28,39	2,10,35	11,22,31,35	19,22,29,40	19,22,29,40	3,33,34	13,22,24,35
	31 Factores dañinos generados por el objeto					1,19,31	1,2,21,27	2	18,22,35,39
	32 Manufacturabilidad o facilidad de fabricación	2,5	13,16	1,9,11,25,35	2,13,15	1,26,27	1,6,11,28	1,8,28	1,10,28,35
	33 Conveniencia de uso			1,12,26,32	1,15,16,34	12,17,26,32		1,3,12,34	1,15,28
2	34 Fácil para reparar		,15,26		1,4,7,16	1,11,13,25,35		7,13,34,35	1,10,32
CA	35 Adaptabilidad	1,7,1	5,16,34	1,4,7,16		15,28,29,37	1	27,34,35	6,28,35,37
	36 Complejidad del aparato	9,24	,26,27	1,13	15,28,29,37		10,15,28,37	1,15,24	12,17,28
	37 Complejidad de control		2,5	12,26	1,15	10,15,28,37		21,34	18,35
	38 Nivel de automatización		12,34	1,13,35	1,4,27,35	10,15,24	25,27,34		5,12,26,35
	39 Capacidad/Productividad		19,28	1,10,25,32	1,28,35,37	12,17,24,28	2,18,27,35	5,12,26,35	

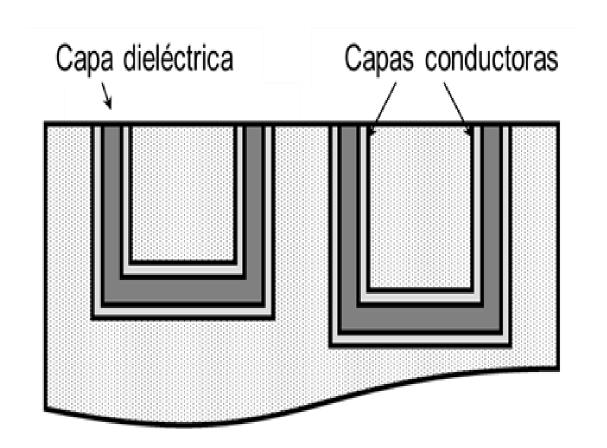
1. Segmentación

- a. Divida un objeto en partes independientes
- b. Cree un objeto seccionado
- c. Incremente un grado la segmentación de un objeto

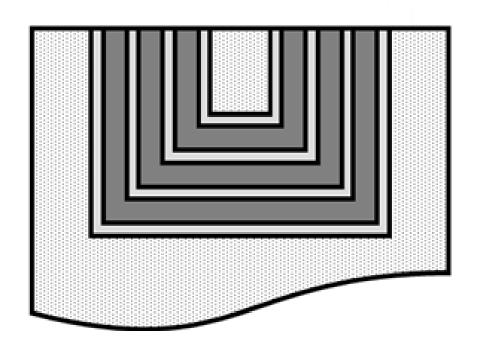
19. Acción periódica:

- a) Remplazar una acción continua con una periódica o con impulsos.
- b) Si una acción ya es periódica, cambiar su frecuencia.
- c) Usar pausas entre los impulsos para obtener una acción adicional.

7. Anidamiento


- "a) Que un objeto pueda colocarse dentro de otro y ellos dos dentro de un tercero.
- b) Un objeto pasa a través de la cavidad de otro"

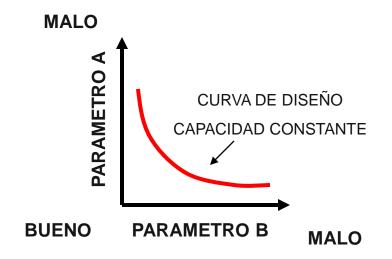
28. Reemplazar sistema mecánico con otro:

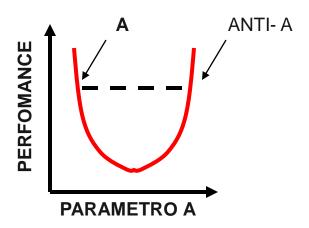

a) Remplazar el sistema mecánico con un óptico, acústico o térmico. b) Emplear campos eléctricos, magnéticos o electromagnéticos para interactuar con un objeto. c) Uso de campos magnéticos en combinación con partículas ferromagnéticas.

APLICACIÓN DEL PRINCIPIO:

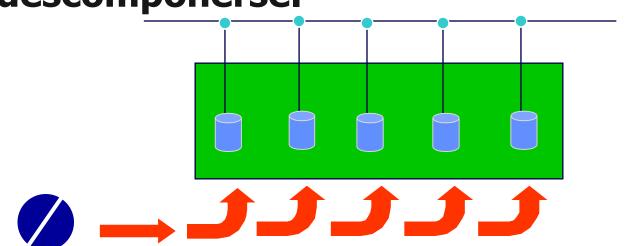
Formar un condensador micro-electrónico que consiste en alternar capas dieléctricas y conductoras, una dentro de otra. Las capas conductoras están conectadas eléctricamente en serie. Un condensador de este tipo tiene una alta capacitancia total y un tamaño relativamente pequeño.

Un capacitor dentro del otro



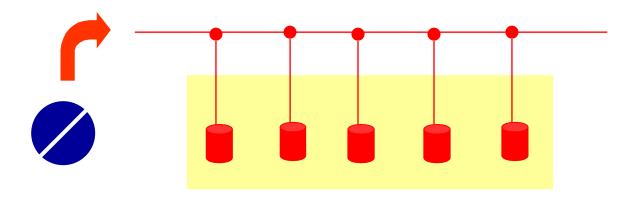

CONTRADICCIONES FÍSICAS

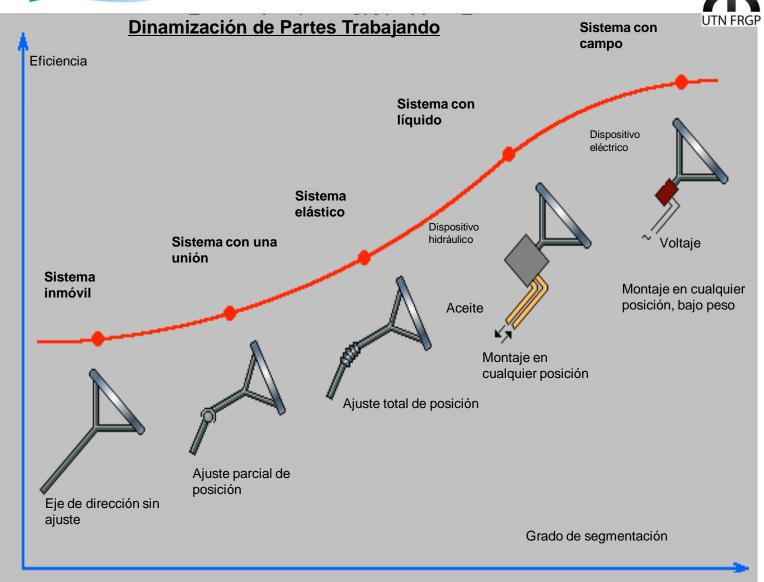
CONTRADICCIÓN TECNICA


CONTRADICCIÓN FISICA

PLATEANDO PARTES METÁLICAS

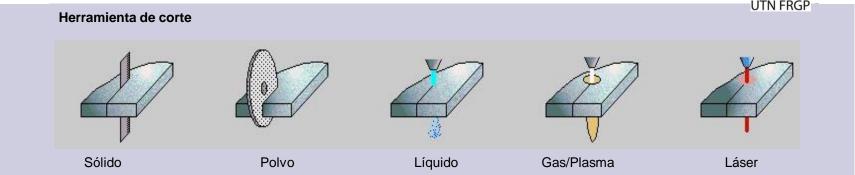
Para platear partes metálicas con níquel, estas deben ser ubicadas en un baño con sales de níquel. El baño es calentado para incrementar la productividad del proceso. Sin embargo, el calentamiento reduce la estabilidad de la sal en la solución y comienza a descomponerse.

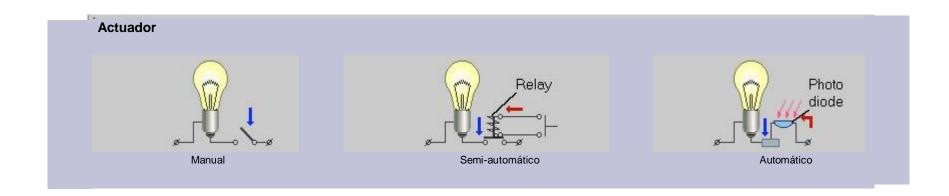


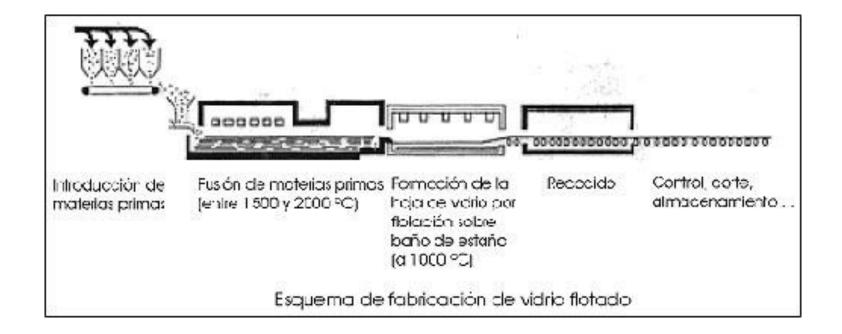


SEPARACIÓN EN ESPACIO

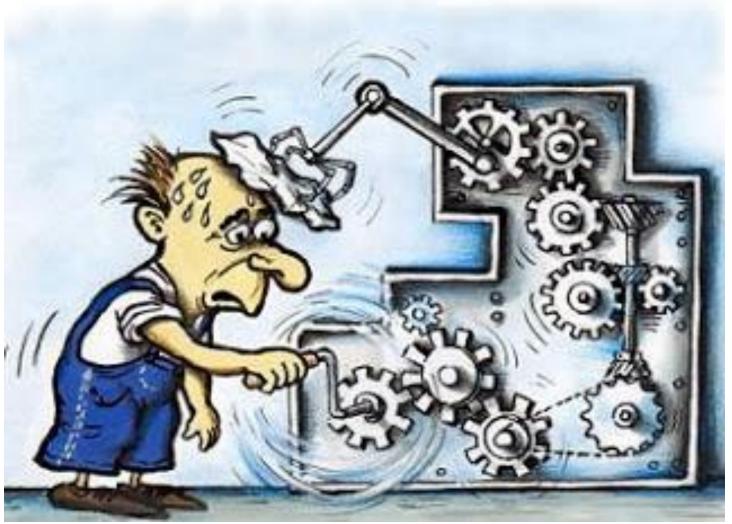
 En el plateado con níquel de partes, es necesario incrementar la temperatura solamente en la proximidad de las partes. Para llevar acabo esto, las partes pueden ser calentadas en vez de las solución.







Analizando el nivel de tecnología actual y contradicciones en nuestros productos, el TRIZ puede usarse ver el progreso evolutivo y crear el futuro. Por ejemplo, Altshuller pudo predecir la tecnología futura de fabricación de plato de vidrio. El proceso primitivo fue rodar el vidrio caliente hacia un portador. Durante este proceso, el vidrio tiende a combarse entre los rodillos que producen la ondulación en el producto final. Usando el patrón #7 usando, de transición del Macro a Micro, Altshuller predijo que los rodillos se pondrían más pequeños y más pequeños hasta que ellos alcanzaran el límite teórico de átomo clasificado según tamaño. Varios años después, una compañía inglesa introdujo un nuevo proceso de rodar el vaso fuera en un baño de estaño líquido. La Evolución del Producto dirigida puede usarse para desarrollar las patentes para la tecnología futura ante los competidores de uno.



ARIZ Algoritmo de resolución de problema inventivo

 El ARIZ es la herramienta analítica central del TRIZ, que provee los pasos secuenciales específicos para desarrollar una solución para los problemas complejos

EL PENSAMIENTO ES COMO EL PARACAÍDAS...

SOLO FUNCIONA CUANDO ESTA ABIERTO

MUCHAS GRACIAS POR SU ATENCIÓN Y MUCHO ÉXITO