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Observer-based robust high-order fully actuated attitude 

autopilot design for spinning glide-guided projectiles 

 

Abstract 

This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glide-guided projectile 

(SGGP), addressing model uncertainties and external disturbances. Based on fixed-time stable theory, a disturbance observer 

with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects, irrespective of initial 

conditions. By introducing an error integral signal, the dynamics of the SGGP are transformed into two separate second-order 

fully actuated systems. Subsequently, employing the high-order fully actuated approach and a parametric approach, the 

nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system, ensuring that the projectile's attitude 

asymptotically tracks the given goal with the desired eigenstructure. Under the proposed composite control framework, the 

ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method. 

Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations. 

Keywords: Spinning glide-guided projectile; Attitude control; Sliding mode disturbance observer; Fixed-time stable theory; 

High-order fully actuated approach  

 

1. Introduction 

A Spinning Glide-Guided Projectile (SGGP) refers to a gun-launched munition that combines the 

features of a rolling airframe and fin stabilization, further supplemented with economical navigation, 

guidance, and control systems [1, 2]. One of the critical requirements for an SGGP during its midcourse 

phase is to maintain a specific attitude for extended-range flight, necessitating swift and precise attitude 

tracking. Nevertheless, SGGPs face a host of challenges. These include strong uncertainties in their 

aerodynamic coefficients and exposure to external disturbances. The control system of an SGGP, in 

particular, grapples with control coupling issues, a consequence of the vehicle's spinning and the 

inherent delay in the control system's dynamics. The aforementioned factors not only impair the 

efficiency of the SGGP's attitude control but also challenge its ability to achieve high-accuracy and stable 

flight. This considerably amplifies the challenge of ensuring precise and stable flight control for the SGGP 

system. 

Numerous refined strategies have been developed specifically targeting control system design for 

flight vehicle. Prominent among these contain linear quadratic regulator (LQR) control [3], adaptive 

control [4], and sliding mode control [5]. All the aforementioned research primarily relies on the 

state-space descriptions. However, the high-order fully actuated system (HOFAS) method proposed 

recently, which readily integrates with diverse control techniques like backstepping and adaptive control, 
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demonstrating significant potential for handling nonlinear system [6]. In Ref. [7],the control issue for 

robotic system was addressed using the PD feedback law, with the feedback gains determined by the 

introduced direct parametric approach. Ref. [8] presented an attitude controller for spherical liquid-filled 

spacecraft based on HOFA approach. Ref. [9] given a adaptive fault tolerance control framework with 

state observer, which can satisfy different fault-tolerance control scenarios without observation condition. 

Ref. [10] employed a high-order robust command filtered backstepping (HORCFB) controller using the 

high-order fully actuated (HOFA) system approach. It addresses trajectory tracking in strict-feedback 

systems with nonlinear uncertainties without simplifying high-order systems. In Ref. [11], the practical 

prescribed time control of interconnected nonlinear systems is explored using the HOFA system 

approach. The research introduces a method to define system output's convergence time and accuracy, 

irrespective of initial conditions. Ref. [12] proposed a modified HOFA theory and applied to the planar 

quadrotor modeling, which can achieve arbitrarily assignable eigenstructure. In Ref. [13], the prescribed 

error performance control for second-order fully actuated system is proposed based on prescribed 

performance function and sliding mode control technique, which guarantees the closed-loop system 

converges to zero along the prescribed error trajectory. Nevertheless, the HOFA approach necessitates 

precise knowledge of system dynamics. While it can withstand minor modeling inaccuracies, it isn't 

designed to handle significant uncertainties, and the behavior of the closed-loop system is affected by the 

characteristics of uncertainties. The disturbance observer and controller scheme has become an efficient 

solution to the nonlinear tracking problem of systems with uncertainties, finding applications in areas 

such as flight control, robotic, and electronic systems. 

Among the various observers, the extended state observer (ESO) and the sliding mode disturbance 

observer (SMDO) are prominent. SMDOs employ a nonlinear feedback law to guide the estimation error 

towards convergence on a hypersurface within a finite time interval. Levant’s observers, a subset of 

SMDOs, have been applied in fields like UAV attitude control [14], automotive electronic throttle system 

control [15], and missile guidance law design [16]. In Ref. [17], a super-twisting SMDO was introduced, 

ensuring finite-time stability of estimation error dynamics. Although the mentioned SMDOs are effective 

in estimating disturbances, their static gain design can pose challenges. This not only potentially affects 

the convergence rate and estimation accuracy, but also introduces the burden of parameter tuning. 

Building upon adaptive sliding mode control theory, various observers have been proposed. Refs. 

[18, 19] presented an adaptive sliding mode disturbance observer (ASMDO) that employs an adjustable 

adaptive law to optimize the adaptive gain, using the estimation error's norm. Ref. [20] suggested a 

dual-layer ASMDO based on terminal sliding mode, alleviating the need for disturbance boundedness. 

Yet, the design of this observer is both conservative and intricate. Ref. [21] offered an enhanced ASMDO, 

where the signum function is replaced by the hyperbolic tangent function, and a modified adaptive law 
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with a dead zone is applied to adjust the adaptive gain. In Ref. [22], an ASMDO incorporated a 

 -modified adaptive law, ensuring both error and adaptive gains remain bounded. However, the 

mentioned studies primarily assure only the finite-time convergence of the observer system. While the 

settling time for a finite-time stable system is adjustable, it remains contingent upon the initial state. 

Consequently, a shift in the initial estimation error results in a corresponding settling time alteration. 

Moreover, observer design is essentially addressing the stability issue of the error dynamics system. 

Fixed-time stable theory offers a solution, ensuring a consistent settling time regardless of initial 

conditions [23, 24]. Ref. [24] introduced a robust fixed-time consensus protocol where the dynamics 

stabilize a first-order integrator system within a fixed time via a fractional power method. Nonetheless, 

this control law faces the singularity challenge and potential input saturation. Multiple nonsingular 

terminal sliding mode techniques have been developed to combat the singularity issue [25, 26], but they 

introduce intricate singularity avoidance clauses and suffer from non-strict convergence during the 

reaching phase. An innovative solution is the integral sliding mode control (ISMC) methodology. By 

enveloping the desired dynamics within the integral notation, it avoids producing negative exponents, 

addressing the singularity challenge. Additionally, ISMC establishes the sliding motion from inception, 

eliminating the reaching phase. Studies [27, 28] depict an ISMC based robust control law for multi-agent 

systems where the tracking error trajectory aligns with the nominal control and a variable structure term 

mitigates the effects of matched disturbance.  

In this research, a comprehensive fully actuated system-based attitude autopilot approach for a 

dual-channel controlled SGGP is introduced. This control strategy incorporates a robust adaptive 

fixed-time integral sliding mode-based disturbance observer (AFxTISMDO) combined with a HOFAS 

controller. The primary innovations of this research are outlined as follows: 

⚫ A dual-channel control attitude model with control coupling was established. Concurrently, a novel 

AFxTISMDO, which employs the bounded adaptive law and fixed-time integral sliding mode 

technique, was proposed. In comparison to the adaptive observers in Refs. [18, 19], the proposed 

SMDO is demonstrated to ensure fixed-time stability irrespective of initial conditions. Moreover, the 

potential increase problem of the adaptive law is addressed. 

⚫ Under the second-order fully actuated scenario, the nonlinear system was transformed into the 

constant linear closed-loop system. This transformation allows the closed-loop system to track given 

reference signals accurately. The introduction of integral feedback signal effectively reduces the 

steady-state error. To our best knowledge, this represents the inaugural study addressing the SGGP 

attitude control issue within the HOFA system. 

⚫ Based on the Lyapunov stability theory, the proposed composite attitude ensures closed-loop 

stability through ultimately uniformly bounded stability. 
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The remaining sections of this paper are structured as follows: Section 2 presents various definitions 

and useful lemmas. It also establishes the dynamic model of the SGGP. Section 3 introduces the 

AFxTISMDO and discusses the design of the attitude autopilot based on the AFxTISMDO and the 

high-order fully actuated approach. Section 4 provides numerous simulations to demonstrate the 

performance of the proposed attitude autopilot design. Finally, a brief conclusion is presented in section 

5. 

 

2. Preliminaries and problem formulation 

2.1. Preliminaries 

Definition 1 [23]: Considering the following nonlinear system (1), if the upper bound of the settling time is 

independent of the initial state 0x , the origin is said to be fixed-time stable. 

0( ) ( ( )), (0)x t F x t x x= =   (1) 

where nxR , ( ( ))F x t  is continuous, ( ( )) : (0) 0nF x t D F→ =R ， , and D  is an open neighborhood 

containing the origin. 

Lemma 1 [23, 29]: For a Lyapunov function ( )V x , satisfies 

1 1
1 1( ) ( ) ( )p qV x aV x bV x  − − +   (2) 

where 1 0a  , 1 0b  , 10 1p  , 1 1q  , and   is a small, bounded, positive constant. Then, ( )V x  is 

fixed-time stable. Furthermore, the solution of (2) is bounded by 

( ) ( )
1 1

1 1

1 1

lim ( ) min ,
1 1

p q

t T
x V x

a b


 

→

  
      

=          −  −      
   

∣  (3) 

where (0,1)   and the upper bound of the settling time can be expressed as follows: 

max
1 1 1 1

1 1

(1 ) ( 1)
T T

a q b p
 = +

 −  −
  (4) 

Lemma 2 [30]: Consider the following scalar system: 

( ) ( ) ( ) ( )2
1 02 | arc tan | 1 sgn 0y y y y y y= − + =，    (5) 

where 1 0  ; system (5) is fixed-time stable, and the upper bound of the settling time satisfies the 

following inequation 

1

1 π

2
sT


   (6) 

2.2. Attitude coupling model for a spinning glide-guided projectile 
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The axial-symmetry spinning glide-guided projectile is shown in Fig. 1. The projectile head is 

equipped with two pairs of movable canards as the control input for the controlled system, and the 

deflection of the canards generates the control forces and moments. The tail is equipped with rolling 

stabilization tail fins, and the installation angle of the oblique tail fins generates the rolling stability torque. 

In Fig. 1, O  is the c.g. (center of gravity) of the projectile, and N N NO X Y Z−  represents the 

nonspinning body coordinate frame. 

 

Fig. 1. Diagram of the dual-channel controlled SGGP. 

It is assumed that the flight speed and the rolling rate of the projectile body are constant during the 

midcourse steady flight phase. The attitude model of the dual-channel coupling SGGP can be expressed 

as follows [31]: 

( )

( )

2

cos
tan cos tan sin tan

cos
tan sin cos

/ tan

/
tan

z z

yz

y
y y z

z
y y

z z z z z yx x
z y y

z z z

u
y y y y y

x x z
y z y z

y y y

qSc mg
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qSc mg
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J J J

qSL m m L V m
J J

J J J




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 
        

 
     

   
  

    
   

 −
 = − − + +



− + = + +


 + +
 = + −



+ +
= − +







 (7) 

where   and   represent the angle of attack and sideslip angle, respectively. z  and y  are the 

pitch and yaw angular rates, respectively.   is the pitch angle, and   is the flight path angle. m , L , 

S  and V  are the mass, reference length, reference area, and flight speed, respectively. q  is the 

dynamic pressure, and g  is the gravity acceleration. xJ , yJ  and zJ  represent the moment of inertia 

around the projectile body axis. yc  and yc  are the partial derivatives of the normal force coefficients 

of the projectile with respect to the angle of attack and the sideslip angle, respectively. zm  and zm  

represent the coefficients of the static stabilization moment. z
zm  and y

ym


are the coefficients of the 

pitch damping moment. z
zm  and y

zm


 are the coefficients of the control moment. z  and y  are the 

equivalent canard deflection angles in the pitch and yaw directions, respectively. 

2.3. Control coupling model for the canards of a spinning glide-guided projectile 
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The response lag between the actuator input and output leads to control coupling between the two 

channels. This so-called control coupling can decrease the flight stability of the closed-loop system. 

Therefore, it is necessary to establish a dynamic model of canards in the nonspinning projectile body 

coordinate system. According to related Refs. [32, 33], the dynamics of canards can be expressed by the 

following second-order system. 

s
2 2

s s s

( )

( ) 2 1c

ks

s T s T s



 
=

+ +
  (8) 

where c  is the canard deflection command and   is the deflection angle of the canards. sk , sT , and 

s  are the gain, time constant and damping ratio of the canards, respectively. In addition, the actual 

actuator deflections and deflection commands have the following coupling property. 

cos sin

sin cos

z zcd d
s r

y ycd d

k k
  

  

    
=    

−    
  (9) 

where d  represents the total delay angle and rk  is the dynamic of the actuator system under 

spinning. rk  and d  are formulated as 

( ) ( )

( ) ( )

2 22 2

2 2

2 22 2

1

1 2

1
arccos

1 2

r

s s s

s
d

s s s

k

T T

T

T T

  


 

  


=

 − +



− = +

 − +


  (10) 

2.4. Angle and angular rate loop dynamics of a spinning glide-guided projectile 

During actual flight, the influence of gravity is usually counteracted by gravity compensation. In 

addition, with the control coupling described in Eqs. (9), (7) can be further rearranged as 

( )

( )

( )
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tan cos tan sin tan

tan sin cos
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= − + +

+
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+
+
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= − +

+
( )sin coss r zc d yc d

y
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J
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


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




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 (11) 

where 34
yqSc

a
mV



= ， 34
yqSc

b
mV



= ， 24
z

z

qSLm
a

J



= ， 24
y

y

qSLm
b

J



= ， 
2

22
2

z
z

z

qSL
a

VJ



= ， 

2

22
y

y

qSL m
b

VJ



= ， 
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25

cosz
z s r d

z

qSLm k k
a

J

 
= ， 25

sinz
z s r d

y

qSLm k k
b

J

 
= ， 26

sinz
z s r d

z

qSLm k k
a

J

 
= ， 26

cosy

y s r d

y

qSLm k k
b

J




= ， 

1
x x

z

J
c

J


= , and 2

x x

y

J
c

J


= . 

Then, system (11) can be described as 

.

1

.

2

a a

c

= + + 

= + + ω ω

Ω F B ω d

ω F B δ d

  (12) 

where 

 
TT

34

34

2
24 22 1 25 26

25 2624 22 2

1 1,ext

2

, , ,

1 tan cos tan sin tan
,

0 tan sin cos

tan
,

tan

Δ Δ Δ Δ

Δ Δ Δ

z y

y
a a

z y y

z z y z

a a

a

b

a a c a a

b bb b c
 

 

   

     

   

    

     

 = =  

− + − 
= =   

− +   

 + + −  
 = =  

− + − +   

= + +

= +

Ω ω

F B

F B

d F B ω

d F B δ

d

2,extΔc + d

 (13) 

1d  and 2d  represent the bounded disturbance that contains model uncertainties and external 

disturbances. 

Proposition 1: For the angle loop disturbance, 

1 1,exta a   +  + d F B ω d   (14) 

Due to the aerodynamic uncertainties, the external disturbance and the angular rate of the projectile 

are bounded. Therefore, the disturbance of the angle loop satisfies the following multinomial inequality. 

1 1 2 ah  +  d ω   (15) 

where 1 2,  and ah  are three unknown bounded positive constants. Therefore, 1d  is bounded. 

In this paper , following idea of deriving the bounded property for the lumped uncertainty in Refs. [34, 

35], if the control signal cδ , which bounded by 

1 2 3
0

d
t

c     + +δ ω ω   (16) 

where 1 , 2 , and 3  are bounded positive constants, then the lumped uncertainty 2d  also 

bounded by  

2 1 2 3
0

d
t

h     + +  d ω ω   (17) 

where 1 , 2 , 3  and h  are four bounded positive constants. The detail proof is given as follows. 

Proof: For the total disturbance of the angular rate loop, the multinomial inequation in Eq. (13) is valid. 
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2 2,extc =  +  + ω ωd F B δ d   (18) 

Substituting Eq. (16) into Eq. (18) yields 

( )
( )

2 max 1 2 0 3 2 ext max

max 1 2 ext max 2 0

3

Δ Δ Δ d Δ

Δ Δ Δ Δ d

Δ

t

t

 

 



   

  



 + +  + +

        = + + + 

        +  

ω

d F B ω ω d

F B d B ω

B ω

，

，  (19) 

Considering the change in aerodynamic parameters and the boundedness of external disturbances, 

1 2,ext 1max max

2 2

3 3

 

 

 

 +  +  

                                      

                                      

ω ω

ω

ω

F B d

B

B

  (20) 

Remark 1: The closed-loop input signal structure in Eq. (16) does not adopt the angular acceleration 

signal to design the control signal. This is because the measured angular acceleration signal is 

susceptible to noise pollution. Moreover, if the noise-contaminated signal is used as a component of the 

control signal, the stability of the closed-loop system in the angular rate loop will be affected. 

 

3. Controller design 

In this section, the nonlinear control of Eq. (12) is addressed considering uncertain structures, 

facilitated by an observer-based HOFAS controller framework. Initially, a novel disturbance observer is 

introduced. Then, using the estimates from the observer, a controller based on HOFAS and the 

parametric method is integrated into the system, form a closed loop. The schematic representation of the 

proposed attitude autopilot is illustrated in Fig. 2. 

 

Fig. 2. The control scheme for the dual-channel controlled SGGP attitude autopilot. 

3.1. Design of a disturbance observer with fixed-time convergence 

The reference angle command is defined as  
T

ref ref ref, =Ω . The angle tracking error is defined as 

 
T

ref ref,a    = − −e . The dynamics of the error can be expressed as follows: 
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ref 1 refa a a= − = + +  −Ω Ω F B ω d Ωe   (21) 

ω  can be regarded as the control input of the angle loop. To extend system (21) to a second-order 

system, 
0

d
t

a a = x e , and its second-order derivative with respect to time is obtained as 

( )1 ref ref 1

a

a a a a a= + +  − = − + + 

F

F B ω d Ω F Ω B ω dx   (22) 

where 34 ref

34 ref

1 cos tan tan sin tan
,

0 sin tan cos
a a

a

b

      

    

− − − +   
= =   

− − +  
F B . 

Hence, the attitude tracking problem of the angle loop is transformed into the stability problem of the 

second order system. 

Introduce an auxiliary variable az  as the estimation value of ae  and the estimation error is 

defined as a a a= −z z e . The first derivative of ae  respect to time is expressed as 

1a a a a= − − − z z F B ω d   (23) 

The desired dynamic of az  is designed as 

,nomaa a a a= + − +z F B ω z v   (24) 

where ,nomaz  represents the expected dynamic of the estimation error and is designed as follows: 

( ) ( ) ( )2
,nom nom 22 arc tan sgn

aa a a= +z z 1 z z   (25) 

av  represents the estimated value of the disturbance. Then, the integral sliding mode vector is 

defined as 

( ) ( ) ,nom
0

0 d
t

a a a at = − + s z z z   (26) 

From the design principle of the integral sliding mode, i.e., 0a a= =s s , the following dynamics can 

be obtained: 

 1a a= − s v d  (27) 

The virtual control value av  can be expressed in the following form. 

( ) ( )sgn

a a

a a

m p

n q
ha a a a a at s   = − − −v s s K   (28) 

where the symbol x   refer to ( )sign
yyx x x=  , am , an , ap  and aq  are four positive odd numbers. 

a am n , and a ap q . For the design gain, 0a   and 0a  . ( ) ( ) ( )
T

,1 ,2
ˆ ˆ,h h ht K t K t =

 
K  is the 

adaptive gain vector and is updated according to the adaptive law as follows: 

( ), 2 , 1 ,
ˆ ˆ| |h i a a i a h iK t s K = −   (29) 

Up to now, the disturbance observer for angle loop is summarized as  
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( ) ( ) ( )

( )

,nom

2
,nom nom 2

0 ,nom

, 2 , 1 ,

2 arctan sgn

( ) (0)

ˆ ( )sg

)ˆ ˆ

n

(

a a

a a

a a a

a a a a a

a a a a

t
a a a a

m p

n q
a a a a a h a

h i a a i a h i

t d

t s

K t s K





 

 

= −


= + − +

 = +


 = − + 


 = − − −

 = −


   

z z e

z F B ω z v

z z I z z

s z z z

v s s K

  (30) 

Theorem 1: By considering the angular loop error system of the SGGP described by Eq. (21) and 

utilizing the designed disturbance observers in Eq. (30), the observer error tends to the origin in a fixed 

time, and the upper bound of the settling time is bounded by 

max

2 2

1 1

2 ( ) 2 ( )
2 2

a a a a

a a

p q m n

q na a a a
a a

a a

T T

q p m n

q n
 

+ +
 = +

− −
 

 (31) 

Proof: The proof is given in Appendix. A.  

3.2 Angle loop control command design based on the high-order fully actuated system approach 

By considering aB  in Eq. (22) and calculating its determinant, the following can be obtained. 

( )
1 cos tan tan sin tan

det
0 sin tan cos

cos( ) / cos

a

    

  

  

− +
=

+

              = −

B
  (32) 

Because    − , ( )
cos

det
cos

a




=B . When 

π

2
 =  , singular problems appear. However, in the 

whole midcourse flight process of the SGGP, the flight path angle and pitch angle satisfy two conditions: 

π π
,

2 2


 
 − 

 
 and 

π π
,

2 2


 
 − 

 
. Therefore, the matrix aB  is invertible, and the error system in Eq. (22) 

is fully actuated [36]. 

According to the definition, vector 
( )  

T0 1
a a a=x x , x  and coefficient matrix  0 1

0 1a a aK K K=  . Then 

the following virtual angular rate command  
T

1 2,c c c =ω  is designed based on the high-order fully 

actuated system approach. 

( )1 *
,in c

*
c ,1

c a c

a a ex

− = − +

 = + −

ω B ω ω

ω F v u

  (33) 

where ex,1u  is some external signal and ,incω  is the PI feedback control law and expressed as  

( ) ( ),in 1 0,c a a a a a a a aK K ，= +ω x x x x x x   (34) 

where ( ) 2 2
0a a aK x x R，  and ( ) 2 2

1a a aK x x R， are feedback gains vector and the rule for 

parameter selection will be presented later. By combining the fully actuated system and control law Eq. 

(33), one has 
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( ) ( )1 0 ex,1aa a a a a a a a aK K+ + = +x x x x x x x h u, ,   (35) 

where 1a a=  −h d v is the tracking error of disturbance. The error will converge to a small neighborhood 

in a fixed time. When the external signal ex,1u  is removed, Eq. (35) can be rewritten as follows: 

( ) ( ) ( ) 2 10 1 0 1
0 1

0
a a a a

a

K
   

=  +  
 

x x
h

  (36) 

where ( ) 2 2 2 2
0 1

0 1

0
a a

a a

I
K

K K

  
 =  

− − 
.Then, the problem is converted to design a matrix 0 1a aK  such that 

( )0 1a aK  is stable. 

Theorem 2: The closed-loop control system, which is composed of the second-order fully actuated 

system in Eq. (22), disturbance observer, and control law (33), is ultimately uniformly bounded, and the 

trajectory of the fully actuated system converges to the following neighborhood. 

( ) ( )( ) ( ) ( )0 1 0 1 0 1
01 |

T
a

a a a a
a

K
P A

C


  
=  

  
x x x  

Proof: The proof is given in the Appendix. B. 

3.3. Control command design of an angular rate loop based on the high-order fully actuated system 

approach 

Similar to the definition method in the above section, the vector 
( )  

T0 1
a a =σ x , x  and the 

coefficient matrix  0 1
0 1K K K  = . The angular rate loop should track the virtual control law cω , so the 

tracking error is defined as 

c= −ωe ω ω   (37) 

Its derivative with respect to time is calculated as 

2c c= − = + +  −ω ω ωe ω ω F B δ d ω   (38) 

First, a disturbance observer is designed to reconstruct the disturbance 2d , and it has the same 

form as proposed in the angle loop design, which is constructed as 

( ) ( ) ( )

( )

,nom

2
,nom nom 2

0 ,nom

, 2 , 1 ,

2 arctan sgn

( ) (0) d

( )s

( )ˆ

gnˆ

ˆ

t

m p

n q

i i i

t

t s

K t s K

 

 



 

 

  





 

 

= −


= + − +

 = +


 = − + 


 = − − −


   

 = −


ω ω ω

ω ω ω ω ω

ω ω ω

ω ω

ω ω ω ω ω

ω ω

z z e

z F B δ z v

z z I z z

s z z z

v s s K

  (39) 

Similarly, it is defined that 
0

d
t

= ω ωσ e , and by calculating its second derivative corresponding to 

time, it is concluded that 

( )2 2c c= + +  − = − + + 

ω

ω ω ω ω ω

F

σ F B δ d ω F ω B δ d             (40) 
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where 

2
24 22 1 1 25

2524 22 2 2

tan 0

0tan

z y y c

y z z y c

a a c a

bb b c

     

      

 + + − −  
 = =  
 + − + −   

ω ωF B，  (41) 

The matrix ωB  satisfies 

( )det 0ωB   (42) 

Therefore, system (40) is fully actuated. Based on high-order fully actuated control theory, the 

canard command is designed as follows. 

( )1 *
in

*
ex,2

− = − +

 = + −

ω

ω ω

δ B δ δ

δ F h u

  (43) 

Similar to Eq. (34), ex,2u  refer to some external signal and the following PI feedback control law is 

adopted as 

( ) ( )in 1 0K K= +ω ω ω ω ω ω ω ωδ σ σ σ σ σ σ， ，   (44) 

where ( ) 2 2
0K ω ω ωσ σ R，  and ( ) 2 2

1K ω ω ωσ σ R，  are feedback gain vectors. By combining the 

second-order fully actuated system in Eq. (40) and control law in Eq. (43), the following can be obtained. 

( ) ( )1 0 ex,2K K+ + = +ωω ω ω ω ω ω ω ω ωσ σ σ σ σ σ σ h u， ，           (45) 

where ωh  represents the tracking errors in the disturbance observer and the estimation error converges 

to a small neighborhood in a fixed time. When the external signal ex,2u  is removed, system (45) can be 

reconstructed as follows: 

( ) ( ) ( ) 2 10 1 0 1
0 ~1

0
K   



 
=  +  

 
σ σ

h
  (46) 

where ( ) 2 2 2 2
0 1

0 1

0 I
K

K K
 

 

  
 =  

− − 
. Then, the problem is also converted to design a matrix 0 1K    

such that ( )0 1K   is stable. 

Theorem 3: The closed-loop system, which is composed of the fully actuated system in (40), observer in 

(39), and control law in (43), is ultimately uniformly bounded, and the trajectory of the fully actuated 

system converges to the following neighborhood. 

 ( ) ( )( ) ( ) ( )0 1 0 1 0 1
0~1|

T
wK

P A
C





  

=  
  

ω ω ωσ σ σ  (47) 

Proof: The proof is similar to the proof of theorem 2, which is omitted here.  

Remark 2. Inspired by the fixed-time stable theory, an improved fixed-time converged low pass filter 

(FxLPF) proposed in Ref. [37] is given below to acquire the differential signal in this paper 

1 2
1 1 2 , (0) (0)d c d c d c dx c x x c x x x x  =  −  +  −  =   (48) 
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where cx  and dx  denote the input and output signals of FxLPF, respectively. In addition, 1 0  , 1 0c  , 

2 0c  , 1 1   and 2 1   are design parameters. 

The tracking error signal is defined as c c dx x x= − . Its derivative with respect to time is calculated as 

1 21 2

1 1
c c c c

c c
x x x x 

 
= −   −   +   (49) 

Here, cx  is regarded as a bounded disturbance that satisfies | |c cx x , where 0cx   is a constant. 

Recalling lemma 1, the tracking error converges to the following domain   in a fixed time sT . 

( ) ( )
1 2

1 1

1 1

1 2

lim min ,
1 1s

c c
c c

t T

x x
x x

c c

 


 

 

 →

  
      

 =          − −     
   

∣  (50) 

where (0,1)   and the settling time sT  is bounded by 

( )
1

,max
1 11

s sT T
c

 




 
 =

−
  (51) 

Therefore, the tracking error of FxLPF is practically fixed-time stable. 

3.4. Selection of the coefficient matrix 

Proposition 2: For an arbitrary matrix nr nrQ  R , the coefficient matrix 0 1K  and nonsingular matrix 

nr nrV R  satisfy 

( )0 1 1K VQV − =   (52) 

where 

( )0 1 1 ,nK ZQ V Z F−= −   (53) 

( )

1

,
...

n

Z

ZF
V V Z F

ZF −

 
 
 = =
 
 
  

  (54) 

where r nrZ R  is a random coefficient matrix that satisfies 

 ( )det , 0V Z F   (55) 

The following gain selection method is created to realize the fast tracking of the angle loop. The 

closed-loop poles 1 2 1ns s = = −  and 3 4 2, n ns s j = −   are considered. Here, n  represents the 

natural frequency of the system, and n  represents damping. Letting 1 20 n n   , 1 2,s s  are the 

dominant poles. The gain matrix can be expressed as follows. 

1 2 2 2 2

2 2
2 2

2 2
2

0

blockdiag 3 / 4
0

1

n

n n n

n

I

F



  



 



− 
 

 = − + 
  

−   

  (56) 

Furthermore, 
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( )

2
1 2 2

2 2 2 22
2 2 2

2 2
2 2

0

7 / 4 2 3 / 4
0

2 7 / 4

n

n n n n n

n n n

I

F



    

  


 
 

  + − +=
  
  

− +  

 (57) 

It is defined that  2 2 2 2Z I I = , and then,  

2 2 2 2

2 2
2 2

1 2 2
2

3 / 4

1

n n n
n

n

I I

V
I

  




 



 
 

 = − + 
−   

−   

  (58) 

Its inverse matrix is expressed as 

( ) ( )
( )

2 2 2 2 2
1 2 2 2 1 2

1 2 2 11
2 2 2 2

1 1 2 1 2 1 2 2

1 1 1 2 1 2

Λ 3 / 4 3 / 4

1 Λ 11

Λ 3 / 4 3 / 4

1

n n n n n n n n

n n n n

n n n n n n n n n n

n n n n n n

V

       

   

         

     

−

 − + − − − +
 

− − + − 
=  

− − + − − − 
 

− − − −  

 (59) 

where ( ) 2 2 2
1 1 2 2det , 2 / 4 0n n n n nV Z F      = = − + −  . On this basis, the gain matrix in control law (34) 

can be expressed as follows. 

 2 1
0 1 0 1a a a aK ZF V K K−= − =   (60) 

where 

01 02 11 12
0 1

03 04 13 14

1 1
,

a a a a
a a

a a a a

a a a a
K K

a a a a

   
= =   

    
  (61) 

and the following holds. 

( ) ( )( ) ( )

( )( )
( ) ( )

( ) ( )( )

2 2 2 2 2
01 04 1 1 2 1 1 2 2 1 2 2

2 2 2 2
02 1 2 2 1 1 2

2 2 2
03 1 1 2 1 2 1 2

2 2 2 2
11 14 1 1 2 1 2 2 2 2

Λ 7 / 4 2 3 / 4

3 / 4 / 4 2

2 7 / 4

7 / 4 2 3 / 4

a a n n n n n n n n n n n n

a n n n n n n n n

a n n n n n n n n

a a n n n n n n n n n

a a

a

a

a a

           

       

       

         

= = − + + − + + +

= + − − −

= − − − − +

= = − − + − + + +( )

( )( )
( )

2

2 2 2 2 2
12 2 1 2 2 1

2 2 2
13 1 2 1 2 2

3 / 4 / 4 2

2 7 / 4

n

a n n n n n n n

a n n n n n n

a

a

      

     















= + + − −

 = − − − −

  (62) 

The parametric approach of the gain matrix in angle loop control law (34) and angular rate loop 

control law (44) is the same as that in Eqs. (52)–(62). 

 

4. Case study 

This section includes numerous numerical simulations based on the designed attitude autopilot to 

verify the effectiveness of the proposed control scheme. The initial flight parameters of an SGGP are 

given in Table 1. 

Table 1 

Gliding flight parameters of the SGGP. 
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Parameters Value Parameters Value 

/kgm  53.0 z
zm

 -2.0 

( )-1m sV  280 z
zm

 4.2211 

2/ mS  0.019 ym
 -0.241 

/mL  1.1 y

ym


 -10.5312 

( )/ rad  0.017 y

ym


 4.2211 

yc
 0.259 xJ  4.9969 

zc
 0.2421 yJ  4.9969 

zm
 -4.4276 zJ  0.0033 

The user-defined parameters are given in Table 2. 

Table 2 

Parameters of the proposed controller. 

Parameters Value Parameters Value 

1n , 2n  5 ap , p  7 

n  0.7 aq , q  9 

a , a  2 ω , ω  2 

( )ˆ 0hK , ( )ˆ 0K  5 1c , 2c  1 

am , mω  5 1a , 2a  0.001,10 

an , nω  3 1 , 2  0.001,10 

4.1. Attitude tracking test 

First, the following functions are used as the reference signal. 

( ) ( )( )

( ) ( )( )
ref

ref

5 cos 2 sin 0.8 2( )

5 sin 2 cos 0.6 4( )

t t

t t





 =  + 


=  − 

  (63) 

The initial value of the angle is set as ( )  
T

0 0,0=Ω , and the initial value of the angular rate is 

( )  
T

0 0,0=ω . As depicted in Fig. 3(a), despite aerodynamic uncertainties and external disturbances, 

both the angle of attack and sideslip angle achieve reference signal tracking within 0.5 s. Fig. 3(b) 

illustrates the variation curve of the angular rates, revealing a smoothly designed virtual control law c . 

Furthermore, under the action of the designed canard angle, z  and y  rapidly and accurately track 

the virtual control signal, accomplished within 0.5 s. 

As portrayed in Fig. 3(c), the canard commands and canard deflections are presented. Simulation 

results confirm that the composite fully actuated controller ensures smooth deflection command and 

actual deflection of canards, meeting the input saturation limits. As shown in Fig. 3(d), due to the use of 

integral signals in the design of the controller, the steady-state error is effectively reduced so that the 

designed controller can ensure the tracking performance of the closed-loop system. 

Depicted in Figs. 3(e) and 3(f), the disturbance observer precisely estimates the total disturbance for 
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both the angle loop and angular rate loop. Applying the estimated value to feedforward compensation 

effectively reduces the burden of gain feedback in controller selection. Fig. 3(g) presents the variation 

curve of the adaptive gain in the disturbance observer. As the change curve shows, the adaptive gain 

decreases as the estimation error decreases. As a result, the chattering problem in conventional sliding 

mode control is overcome. Compared with the adaptive sliding mode control law used in Ref. [38], the 

adaptive sliding mode control law used in this paper achieves an accurate estimation of the disturbance 

and ensures the boundedness of the adaptive parameters. 

Fig. 3(h) shows the variation curve of the integral sliding mode variable. One can observe that the 

designed integral sliding mode variable remains on the sliding mode surface from the initial moment. The 

sliding mode variable enters the sliding motion at the initial moment and maintains the sliding motion in 

the subsequent control process. The singularity problem is solved by eliminating the reaching phase, and 

the estimation errors converge to origin within a fixed-time. 
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Fig. 3. Simulation results of numerical example #1: (a) Attitude angles; (b) Angular rates; (c) Deflection 

angle of canards; (d) Bound of the tracking error; (e) Estimation of angle loop disturbance; (f) Estimation 

of angular rate loop disturbance; (g) Adaptive gains; (h) Sliding mode variables. 

Furthermore, the square signal with an amplitude of 0.3 rad is used as the reference signal for 

numerical simulation. Figs. 4(a) and 4(b) depict the angles and angular rates. Using the proposed 

autopilot design, both angles and angular rates efficiently track the given reference signal. Fig. 4(c) 

illustrates canard commands and actual canard deflections. Large initial tracking errors cause significant 
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canard deflections for a quick projectile response. As errors reduce, the deflections become minor to 

counter disturbances. Notably, sharp changes in the reference signal lead to abrupt canard deflections, 

yet within physical input limit. Fig. 4(d) display the norm bound of the tracking error, which converges 

rapidly. Figs. 4(e) and 4(f) given the estimation of disturbance in angle and angular loop. One can see 

that the designed observer can achieve fast and accurate tracking of the total disturbances. Therefore, 

the burden of feedback controller gain selection is reduced. From the simulation results given in Fig. 4(g), 

one can see that the boundedness of the adaptive parameters is guaranteed. Fig. 4(h) shows the change 

curve of the integral sliding mode variable. According to the simulation diagram, the designed integral 

sliding mode variable maintains the sliding motion at the beginning of the control process. 
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Fig. 4. Simulation result of numerical example #2: (a) Attitude angles; (b) Angular rates; (c) Canard 

deflection angles; (d) Bound of the tracking error; (e) Estimation of angle loop disturbance; (f) Estimation 

of angular rate loop disturbance; (g) Adaptive gains; (h) Sliding mode variables. 

4.2. Comparison with existing control laws 

To demonstrate the effectiveness and superiority of the designed controller, the designed method is 

compared with the trajectory linearization control-based sliding mode controller (TLC-SMC) [39] and 

trajectory linearization control-based integral sliding mode controller (TLC-ISMC) [40]. A square signal 
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serves as the reference signal throughout. Figs. 5(a) and 5(b) show the tracking curves of the angles and 

angular rates, respectively. While all three controllers track the given signal precisely, according to the 

enlarged figures, the angles in the TLC-SMC and TLC-ISMC control schemes are subject to the 

chattering phenomenon. In contrast, the angle profiles of the proposed controller are smooth. Reviewing 

the angular rate curve in Fig. 5(b), the chattering phenomenon under the SMC-based controllers is more 

prominent. Figs. 5(c) and 5(d) depict the deflection angles, and it’s evident that the autopilot based on 

HOFAS is significantly smoother. The requirements for the actuator frequency are reduced, which is 

conducive to practical applications. Fig. 5(e) shows the norm of tracking error, and the sliding mode 

controller can achieve rapid convergence of the errors, their cannot overcome the inherent chattering 

problem of sliding mode control. The index function 2 2

0
d

t

z yJ   = +  is chosen to illustrate the control 

energy consumption, and the diagram is shown in Fig. 5(f). This diagram suggests that, compared with 

the high-frequency sliding mode control, the controller designed in this paper has a more significant 

advantage in energy consumption. 

 

Fig. 5. Comparative experiment: (a) Attitude angles; (b) Angular rates; (c) Canard deflection angle; (d) 

Canard deflection angle; (e) Bound of the tracking error; (f) Energy consumption. 
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4.3. Monte-Carlo test 

To verify the robustness of the designed control method against aerodynamic uncertainties and the 

convergence rates of different initial errors, 100 Monte Carlo simulations are carried out. The initial angle 

deviation is ( )0N R ， , where ( )2,3 )R  ( , and the aerodynamic parameters positively deviate by 

60%. Figs. 6(a) and 6(b) show the change curves of the angles and angular rates. Despite the presence 

of aerodynamic uncertainties and substantial initial disturbances, the simulation results indicate that both 

angles and angular rates consistently track the reference signals. As illustrated in Fig. 6(c), when faced 

with large initial disturbance, the canard initially deflects significantly for fast error convergence. As the 

error reduces, its deflection becomes smaller. Fig. 6(d) presents the variation curve of the norm of 

tracking error. According to the simulation diagram, the designed controller can ensure the fast and 

smooth convergence of the error even when the initial error is large. The designed attitude autopilot's 

robustness, rapidity, and superiority are verified. 

 

Fig. 6. Monte-Carlo experiment: (a) Attitude angles; (b) Angular rates; (c) Canard deflections; (d) Upper 

bound of the tracking errors. 

 

5. Conclusions 

In this research, a robust attitude autopilot was developed for a dual-channel controlled SGGP 

during its midcourse flight phase, addressing model uncertainties and external disturbance. A fixed-time 

disturbance observer is proposed based on the modified adaptation law and integral sliding mode 
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technique. The total disturbances are estimated by the proposed observer without prior information, 

which is crucial in practical application. For attitude tracking control, a complete second-order nonlinear 

model with fully actuated characteristics for the SGGP attitude dynamics is developed. Combined with 

the HOFAS approach and parametric approach, the developed nonlinear system is transformed into a 

constant linear system with the desired eigenstructure. Moreover, the performance of the proposed 

attitude autopilot is evaluated with multiple numerical simulation studies, and the superiority is 

demonstrated by comparison with existing attitude control schemes. 

 

Appendix. A 

A Lyapunov function is defined below. 
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where , , ,
ˆ

h i h i h iK K K= − . ,h iK  represents the estimated upper bound of the adaptive parameters. The 

first derivative corresponding to time is obtained in equation (30) and proposition 1, after substitution, one 

has 
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By using Young’s inequality, one has 
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Furthermore, equation (65)can be scaled as follows: 
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converges to the following adjustable neighborhood. 
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The sliding mode variables and adaptive gain of the observer system are both bounded. They are 

related as follows: 
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and 
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By combining the first equations in Eqs. (69), (70), and (67), one has 
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It can be seen from the previous analysis that the estimation errors and adaptive parameters are 

bounded. Therefore, it is further obtained from Lemma 1 that the observer closed-loop system is 

fixed-time stable, and the settling time is bounded as follows: 
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From the properties of ISMC, $\dot{s}_a=0$ from the initial time; then, the following can be obtained: 

( ) ( ) ( )2
nom 22 arctan sgna a a a= +z z 1 z z   (73) 

Recalling Lemma 2, the estimation error converges to the origin in a fixed time, and the channel 

disturbance reconstruction can be realized. This completes the proof.  
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A Lyapunov function is designed as follows: 
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By calculating its derivative and substituting it into the equation, the following is obtained: 
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From theorem 1, the fixed time of the estimation error in the observer is bounded. In other words, 

there is a positive constant a , and 
2

a a h . Then, Eq. (75) can be scaled as follows: 

( )

( )
min

2
max

1

2
a a L a a a a

P I
V V P K V C

P

  

 

−
 − +  = − +   (76) 

where 
( )

( )
min

max

P I
K

P


  



−
=  and 

2

1

2
a L aC P


=  . By solving differential inequality (76), the following 

can be obtained: 
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where a
a

a
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V
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=  as t →  . Therefore, the closed-loop system is ultimately uniformly bounded and 

converges to the following neighborhood. 
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The proof is complete. 
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