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We evaluate an adaptive optimisation methodology, Bayesian optimisation (BO), for designing a mini-
mum weight explosive reactive armour (ERA) for protection against a surrogate medium calibre kinetic
energy (KE) long rod projectile and surrogate shaped charge (SC) warhead. We perform the optimisation
using a conventional BO methodology and compare it with a conventional trial-and-error approach from
a human expert. A third approach, utilising a novel human-machine teaming framework for BO is also
evaluated. Data for the optimisation is generated using numerical simulations that are demonstrated to
provide reasonable qualitative agreement with reference experiments. The human-machine teaming
methodology is shown to identify the optimum ERA design in the fewest number of evaluations, out-
performing both the stand-alone human and stand-alone BO methodologies. From a design space of
almost 1800 configurations the human-machine teaming approach identifies the minimum weight ERA
design in 10 samples.
© 2024 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

Explosive reactive armour (ERA) consists of two 'flyer' plates
sandwiched around an explosive filling. Upon detonation, typically
initiated by a penetrating threat, the explosive drives the flyer
plates apart. When oriented off-normal to the impacting threat, the
imparted motion moves the flyer plates across the threat, contin-
ually feeding new armour material into the interaction, see Fig. 1.
Conventionally, ERA is used to reduce the penetration of shaped
charge jets (SC) such that the residual jet, following interaction
with the ERA, can be arrested by a vehicle's passive armour array
[1]. ERA can also be designed primarily for kinetic energy (KE)
projectiles, requiring much thicker flyer plates than those used for
SC designs [2,3].

The effectiveness of ERA depends on the flyer plate and explo-
sive material, thickness, geometry (i.e., length), orientation, and
yan).
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imparted velocity, as well as characteristics of the threat such as
velocity, diameter, length, etc. For fielded system, additional system
engineering variables also influence performance, e.g., cassette
design, etc. The key mechanisms that influence the performance of
ERA systems are well described in a series of publications by Held
(e.g. Ref. [4], etc.), Mayesless (e.g. Ref. [5], etc.) and co-authors. Due
to the difficulty and cost associated with performing and
adequately instrumenting explosive trials, as well as security re-
strictions, there have been limited public studies that report on
specific ERA experiments and their performance. Mayesless et al.
[6] reported on experiments designed such that only the front or
rear flyer plate interacted with the threat (a shaped charge jet) to
understand the main phenomena involved. Brown and Finch [7]
performed experiments with bare explosive sheets and ERA,
impacted by shaped charge jets. Ismail et al. [8] performed a
parametric evaluation of ERA orientation, flyer plate and explosive
layer thickness, and point of impact. Lid�en [9] investigated the
performance of ERA against long rod penetrators and shaped
charge warhead in reverse ballistic tests and explosive firings. Lanz
et al. [10] examined the influence of explosive type on ERA
of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-
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Fig. 1. Disruption of a shaped charge jet by explosive reactive armour (ERA) after [3].

P. Moldtmann, J. Berk, S. Ryan et al. Defence Technology xxx (xxxx) xxx
performance and collateral damage. Multiple studies have inves-
tigated the performance of non-metallic flyer plates to reduce po-
tential collateral damage, e.g. Refs. [11e13], etc.

Numerical methodologies have been well utilised for further
understanding the key mechanisms of ERA performance, e.g., El-
Shenawy et al. [14] numerically evaluated the effect of flyer plate
and explosive layer thickness on ERA performance at a fixed angle
and Li et al. [15] investigated the performance of flat and V-shaped
ERA with experimentally-validated simulations. Becker et al. [16]
performed many ERA simulations, the results of which were used
to train an artificial neural network (ANN) that could predict the
position and deformation of steel flyer plates. Moldtmann et al. [17]
developed numerical models of ERA with high hardness armour
steel and composite flyer plates interacting with long rod KE pro-
jectiles and shaped charge jets and evaluated their performance
against experimental measurements.

To our knowledge systematic optimisation studies for this ar-
mour technology have not been performed in the open literature,
although Held performed a trial-and-error optimisation of shaped
charge design for robust performance against ERA in [18] and
Mickovic et al. developed an analytical model for the expressed
purpose of optimising an ERA design in [19]. In this study we utilise
Bayesian optimisation (BO), a statistical method that can be used to
efficiently optimise expensive black-box functions, to design an
ERA for protection against a kinetic energy projectile and shaped
charge jet. Here 'expensive' means that data is costly to generate,
either in terms of time or other resources, and 'black box' means
that the function to be optimised is unknown and only allows
point-wise evaluations (i.e., experimental sampling). The utility of
BO has been demonstrated across a wide range of applications,
traditionally in machine learning [20] but more recently in applied
science and engineering domains such as robotics [21], material
discovery [22], andmaterial constitutive modelling [23]. In Ref. [24]
BO was used as part of a novel human-BO teaming paradigm to
optimise the design of a multi-layer armour for protection against
two small calibre KE threats. The objective of this study is to
compare the optimisation performance of conventional BO with
the human-BO teaming paradigm introduced in [24] and a trial-
and-error methodology employed by a human domain expert,
applied to the design of an ERA.
2. Problem definition

The objective of the optimisation study is to design a minimum
weight ERA that reduces the residual penetration of a surrogate
medium calibre KE long rod penetrator and a surrogate PG-7 SC
warhead into a rolled homogeneous armour steel (RHA) witness
block to less than 40 mm. The optimisation activity will use nu-
merical simulation data, see Section 3 for details. The KE penetrator
2

used in the simulations is based on a laboratory round from the
French-German Research Institute of Saint Louis (ISL), shown in
Fig. 2, with a nominal impact velocity of 1400 m/s and a reference
penetration into a semi-infinite RHA steel block of 98 mm. The SC
used in the simulations is based on a unitary 79 mm calibre charge
from Dynamit Nobel Defence (DND Experimentalhohlladung Typ
B), a schematic of which is provided in Fig. 3, with a reference
penetration into a semi-infinite RHA steel block of 350e380 mm.

The ERA consists of a front (1st) flyer plate, explosive layer, and
rear (2nd) flyer plate, a schematic of which is provided in Fig. 4. A
witness block of MARS380, located 200mm behind the rear surface
of the ERA, measured along the projectile line-of-flight, is used to
record the residual depth of penetration. Material options and
respective thicknesses for each layer of the ERA are summarised in
Table 1. Within the defined design matrix there are a total of 1792
potential ERA configurations.

3. Numerical modelling

3.1. Setup of the numerical model

The ERA designs were numerically evaluated against the KE and
SC threats using the IMPETUS Afea solver ®, a non-linear explicit
finite element code. Specifically, we used the g-SPH add-on from
ABSTRAO, a novel meshless method based on Arbitrary Lagrangian
Eulerian (ALE) considerations (see Ref. [25] for details). The ERA
plates and witness block are modelled with 200 mm vertical
extension and 100 mm lateral extension (although half symmetry
was used so only a 50 mmwide block was simulated). ERA plates at
obliquity were sized as required to provide the 200 mm vertical
coverage. The witness block was modelled as an 80 mm thick
MARS380 plate. Representative still images of the simulation
models are provided in Fig. 5 for the KE and SC threats.

The jet formation is not explicitly modelled in each of the ERA
vs. SC simulations. Rather, to save computational time, we have run
the jet formation as a prior model and import it into the ERA
simulations. The initial SC model is run for 40 ms, during which the
jet tip propagates approximately 170 mm (equivalent to the ideal
standoff of the 79mm calibre SCwarhead used in the experiments).
The explosive was detonated in the simulations based on a time
delay corresponding to when the KE or SC penetrators were esti-
mated to first encounter the explosive layer after penetrating the
front flyer plate. The time delay was calculated based on the ge-
ometry of the threat, impact velocity, and line-of-sight thickness of
the ERA front flyer plate.

To complete the project in the allotted time it was required that
individual simulation run times were on average less than 90 min,
assuming full utilisation of all available IMPETUS licenses (i.e., 4
runs in parallel, each using a full GPU and associated VRAM). This
time requirement put a hard limit on the resolution that could be
used in the simulations. Balancing the competing objectives of
accuracy and run time, we used SPH elements with 0.5 mm spacing
for the KE and SC threats and elements with 0.8 mm for the ERA
plates and witness block. Details on the mesh resolution vs. accu-
racy trade-off study are provided in Ref. [26], together with addi-
tional validation and trade-off studies, e.g., attempts to reproduce
reference penetration of the two threats, etc.

A summary of the material models and model parameters used
in the simulations is provided in Table 2. Specifically, we use the
following for all simulations.

� WHAKE penetrator: Mie-Gruneisen equation of state (EoS) with
parameters from Ref. [27], Zerilli-Armstrong strength model
with parameters from Ref. [28], and Cockroft-Latham failure
model with parameters from the IMPETUS material library.



Fig. 2. Details of the surrogate KE penetrator [17]. Units in mm.

Fig. 3. Schematic of the surrogate SC warhead. The copper liner is shown in red, main
explosive charge in orange, and booster in dark orange.

Fig. 4. Schematic of the ERA target, with front (1st) and rear (2nd) flyer plates sandwiched a
2nd flyer plate and the front surface of the witness block. The ERA orientation is measured

Table 1
Details of the design matrix.

Feature Material

1st flyer plate ARMOX500
Dyneema HB26

Explosive layer Semtex
2nd flyer plate ARMOX500

Dyneema HB26
Orientation n/a
Air gapa n/a
Witness block MARS380

a measured from rear surface of 2nd flyer plate to front surface of witness plate along
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� Copper SC jet: Mie-Gruneisen EoS with parameters from
Ref. [29] and a modified Johnson-Cook strength model (after
[30]) with parameters from the IMPETUS material library. No
failure model is used.

� ARMOX500 flyer plates: linear EoS, Johnson-Cook strength
model with parameters from Ref. [31] and Cockroft-Latham
failure model with parameters from the IMPETUS material
library.

� Dyneema HB26 flyer plates: as anisotropic fabric models are not
yet implemented in IMPETUS for SPH-resolved parts, the
Dyneema plates were modelled as a stack of unjoined, 2 mm
thick isotropic plates to approximate the low through thickness
strength of Dyneema laminates (relative to their in-plane
strength), after the sub-laminate methodology defined in
Ref. [32]. These isotropic sublaminates are modelled using a
linear EoS, Johnson-Cook strength and the Cockroft-Latham
failure model with parameters calibrated to agree with the
round an explosive layer. A 200 mm air gap is measured between the rear surface of the
between the surface of the front flyer plate and normal to the threat line-of-flight.

Configurations No. of options

4e10 mm thick in 2 mm increments 4
10e40 mm thick in 10 mm increments 4
2e8 mm thick in 2 mm increments 4
4e10 mm thick in 2 mm increments 4
10e40 mm thick in 10 mm increments 4
0e60� in 10� increments 7
200 mm [fixed] 1
80 mm [fixed] 1
Total: 1792

the shot axis.



Fig. 5. Visualisation of the simulation models for ERA with Dyneema flyer plates impacted by a KE long rod penetrator (left) and shaped charge jet (right). All parts are discretised
using the g-SPH plug-in in IMPETUS.

Table 2
Constitutive models and model constants used in the numerical simulations.

Physical and thermal properties

Material r/(kg$m-3) E/(MPa) n/(�) c/(�) Cp/(J$kg-1$K-1)

ARMOX500 7850.0 207.0�103 0.30 0.9 455.0
Dyneema HB26 980.0 1.0�103 0.45 0.9
MARS380 [33] 7840.0 210.0�103 0.29 0.9 452.0
WHA [27] 17700.0 340.0�103 0.28 0.9 155.0
Copper 8900.0 115.0�103 0.3 0.9

Gruneisen Equation of State (EoS)

Material S1/(�) G/(�)

WHA [27] 1.237 1.54
Copper [29] 1.489 1.99

JWL Equation of State (EoS)

Material A/(GPa) B/(GPa) R1/(�) R2/(�) u/(�) E0/(kJ$cm-3)

Semtex [34] 759.9 12.56 5.1 1.5 0.29 7.05

Johnson-Cook strength model

Material A/(MPa) B/(MPa) n/(�) C/(�) m/(�) _ε0 /(s�1) T0/(K) Tm/(K)

ARMOX500 [31] 849.0 1340.0 0.0923 0.00541 0.87 1.0 293 1800
Dyneema HB26 50.0
Coppera 90.0 292.0 0.31 0.3 0.45 1.0 293 1356

Zerilli-Armstrong strength model

Material sg/(MPa) kh /(MPa$mm1/2) l/ (mm) K/ (MPa) n/ (�) B/ (MPa) b0 /(K�1) b1 /(K�1) _ε0 /(s�1)

MARS380 [33] 938.3 0.0 1.0 416.7 0.28 2294.5 0.0079 0.0002 1.0
WHA [28] 100.0 0.0 1.0 1047.0 0.09 1381.0 0.0025 0.00011 1.0

Cockroft-Latham failure

Material Wc /(MPa) ss /(MPa) ts /(s) as /(�) bs /(�)

ARMOX500 2061.0
Dyneema HB26 100.0
MARS380 [33] 2200.0
WHA 450.0 1.1�103 2.25�10�6 1.0 1.0

a modified formulation of Johnson-Cook strength model after [30], implemented as MAT_METAL in IMPETUS.
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MAT_FABRIC model for Dyneema HB26 in the IMPETUSmaterial
library (see section 3.2 for validation of this approach).

� MARS380 witness plate: linear EoS, Zerilli-Armstrong strength
model and Cockroft-Latham failure model with parameters
from Ref. [33]. Parameters from Ref. [33] were derived for
MARS190, an earlier product name for MARS380.

� Semtex explosive layer: JWL EoS with parameters for m/46 from
Ref. [34]. m/46 is a Swedish explosive with a similar PETN/RDX
content to Semtex PI SE M (HP) [35]. The detonation velocity of
the explosive was set to 6684 m/s.
3.2. Validation of the numerical model

The simulation models were validated via comparison with
experiments performed at the ISL with the two threats described in
4

section 2. Three ERA configurations were experimentally evaluated,
schematics of which are provided in Fig. 6. Details of the experi-
mental setup and instrumentation are provided in Ref. [17]. For the
KE experiments the explosive is too insensitive to be initiated by
the impact of the projectile. As such, a detonator was installed at
the impact area in these tests, triggered based on an estimated time
when the penetrator tip reaches the explosive (i.e., consistent with
the timing used in the simulations). The experiments used 200 mm
wide flyer plates and witness blocks, compared with the 100 mm
width used in the simulations.

First, we consider the justification for modelling the Dyneema as
a simplified stack of isotropic layers in the g-SPH discretisation. The
motivation for using this discretisation scheme was to reduce the
runtime of the simulations. For a representative KE simulation, a
Lagrangian-discretised projectile and ERA target required approx-
imately 14 h to run to completion (380 ms) on an Nvidia RTX A5000



Fig. 6. ERA configurations experimentally evaluated for validation of the numerical simulations. Impact is from left-to-right. Configuration C1: 4 mm ARMOX500, 6 mm Semtex,
10 mm ARMOX500 at 40� NATO angle, C2: 6 mm ARMOX500, 8 mm Semtex, 6 mm ARMOX500 at 30� NATO angle, C1: 50 mm Dyneema HB26, 8 mm Semtex, 10 mm ARMOX500 at
40� NATO angle. All experiments use a stack of 5�40 mm thick MARS380 witness blocks. Units in mm.
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GPU. The same model, using a g-SPH discretisation for the KE
projectile and ERA target, required approximately 2.5 h to run on
the same computing hardware. Simulations using the SPH and
Lagrangian representations of the Dyneema laminate are compared
with an experimental radiograph in Fig. 7 (the ERA configuration is
C3 from Fig. 6). We can observe that the simulation using a g-SPH
discretisation shows incipient fracture of the rod towards the tail,
while the simulation using a Lagrangian discretisation shows
incipient fracture closer to the nose (and then perhaps again to-
wards the tail). At 120 ms post-impact the experimental image does
not show any clear fracture, although bending is apparent. By 160
ms post-impact the experimental image shows fracture of the rod at
the tail (see Ref. [17]). Based on this comparison we find that both
discretisation schemes result in reasonable qualitative agreement
with the experiment, and that the Lagrangian model with a more
representative anisotropic material formulation does not provide
any improvement in agreement with experiment.

Using the g-SPH discretisation, we compare the residual pene-
tration measurements and numerical predictions for the three ERA
configurations from Fig. 6 in Table 3. We can observe that KE re-
sidual penetration was significantly under predicted in simulations
of ERA configurations with ARMOX500 for the front and rear flyer
plates (C1 and C2), and reasonably well predicted in the simulation
of configuration C3 which had a Dyneema HB26 front flyer plate
and an ARMOX500 rear flyer plate. The SC residual penetrationwas
also significantly under predicted in the simulations of configura-
tions with front and rear ARMOX500 flyer plates (C1 and C2), and
reasonably well predicted for configuration C3 with a Dyneema
HB26 front flyer plate and an ARMOX500 rear flyer plate. For the
shaped charge threat against the C1 and C2 ERA simulations the
80mmwitness block was completely perforated by the residual jet.
In hindsight a thicker witness block to capture the full residual
penetration of the SC threat would have been preferrable, however,
this was impacted by the run-time vs. numerical model accuracy
Fig. 7. Comparison between ERA with 10 mm thick Dyneema front plate and 10 mm thick A
radiograph, middle: g-SPH discretisation and, right: Lagrangian discretisation for the Dyne
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trade-off previously discussed. Although the simulations are not
quantitatively accurate in predicting the residual penetration for
either the KE or SC threat, they do capture the respective ranking of
the three evaluated configurations. In Fig. 8 we plot the residual
penetration measurements and simulation predictions for the
three reference ERA configurations against the KE and SC threats.
The performance ranking for the three configurations against the
KE threat is determined in the experiment as C1 > C2 > C3 and
against the SC threat is determined as C3 > C2 > C1 (i.e., the inverse
of that for the KE threat). This result is not unexpected as one of the
main challenges in the design of armour systems is the different
defeat mechanisms for KE and SC threats. In the simulations we see
that these rankings are maintained, i.e., C1 > C2 > C3 against the KE
threat and C3 > C2/C1 against the SC threat.

In Fig. 9 some representative radiographs from the experiments
are compared to equivalent simulation frames for qualitative
evaluation. In general, we find that the simulations show quite
good agreement with the experiments. The position and shape of
the ERA plates is reasonably well predicted, including the Dyneema
plates. The erosion, deformation, and fragmentation of the KE rod is
reasonably well predicted, although the simulation shows severe
rod bending that is not representative of the experimental image.
The tip velocity of the SCmodel appears to be significantly higher in
the experiments than the simulation, while the simulation seems
to overpredict the jet diameter. The jet is also shown to bemuch too
coherent in the numerical simulations through the interactionwith
the ERA, compared to the experiment.

The models are considered to provide reasonable qualitative
accuracy for use in the optimisation study. Improvements in the
predictive accuracy are likely achievable with increased resolution
of the SPH elements while others require modifications to the
material constitutive models/model constants (e.g., WHA fracture
criteria, etc.) and solver (e.g., treatment of SPH elements lining a
penetration cavity, jet viscosity, etc.). Increases in SPH resolution,
RMOX500 rear plate impacted by the KE rod at 120 ms post-impact. Left: Experimental
ema laminate.



Table 3
Comparison of the experimental measurements and numerical predictions for the 3 ERA configurations tested at the ISL (C1, C2, C3 from Fig. 6). For the simulations an 80 mm
thick MARS380 witness block was used, thus residual penetrations >80 mm could not be measured.

Threat ERA design Residual DoP /(mm) Error /(%)

# Front plate Explosive Rear plate Orientation Exp Sim Error

KE C1 4 mm ARMOX500 6 mm Semtex 10 mm ARMOX500 40� 21 2 �19 89
SC C1 4 mm ARMOX500 6 mm Semtex 10 mm ARMOX500 40� 119 >80a �39 33a

KE C2 6 mm ARMOX500 8 mm Semtex 6 mm ARMOX500 30� 25 18 �7 29
SC C2 6 mm ARMOX500 8 mm Semtex 6 mm ARMOX500 30� 101 >80a �21 21a

KE C3 50 mm Dyneema HB26 8 mm Semtex 10 mm ARMOX500 40� 33 39 6 18
SC C3 50 mm Dyneema HB26 8 mm Semtex 10 mm ARMOX500 40� 77 74 �2 3

a The simulations had an 80 mm thick witness block that was completely perforated.

Fig. 8. Comparing the measured and simulated residual depth of penetration for the
three ERA configurations subject to experimental firings. Note that the simulations of
CI and C2 with the SC threat resulting in complete perforation of the 80 mm MARS380
witness plate (i.e., the actual simulated penetration would have been greater than
80 mm in these two models).

Fig. 9. A comparison between experimental radiographs (upper) with simulation frames (low
shaped charge surrogate threat (bottom 2 rows) against ERA configuration C1 (top 2 rows)
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however, come with increased computational cost, which was not
feasible for this study.
3.3. Application of the numerical model

The numerical model was applied to simulate the entire design
space defined in Table 1 against both the KE and SC threats prior to
performing the optimisation. This was done to facilitate the eval-
uation of the different optimisation methodologies and avoid
'contamination' of the human experts (e.g., providing them access
to some of the numerical simulation results and then making them
re-start the optimisation due to problems encountered with the
code). Simulations were performed in parallel on computing facil-
ities at the ISL and Deakin-A2I2, using 3 different GPUs: NVIDIA
RTX A5000, NVIDIA RTX A6000, and NVIDIA DGX A100.
er) in 40 ms intervals for impact of the kinetic energy surrogate threat (top 2 rows) and
and C3 (bottom 2 rows).
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4. Design optimisation strategies

We perform the design optimisation using three different stra-
tegies: (1) a conventional trial-and-error methodology employed
by a terminal ballistics expert at the ISL, (2) a machine learning-
based adaptive sampling methodology, Bayesian optimistion (BO),
and (3) a novel human-machine teaming framework that partners
an engineer from the ISL (different from the expert used for
approach #1) with a Bayesian optimiser. All three optimisations use
the same dataset but are performed independently of one another,
e.g., the two humans are not allowed to communicate with each
other during the study, or review results of the other approaches.

4.1. Trial-and-error ("Expert")

Traditional armour design is performed by engineers who utilise
their experience and domain knowledge to formulate an experi-
mental design, test it, and iterate upon it based on the experimental
result. Experts may utilise additional sources of information such as
reference publications, numerical solvers, or semi-analytical
equations, to improve their knowledge in specific design regimes.
This knowledge is organised in complex schema containing con-
cepts, attributes, and relationships [36].

The role of the human expert was fulfilled by an experienced
researcher from the ISL with a diploma in civil engineering and a
PhD in experimental mechanics. At the time of this study, they had
13 years of terminal ballistics experience, including approximately
four years of experienceworkingwith ERA (primarily for protection
against kinetic energy projectiles). The expert has experience with
performing numerical simulations and ballistic experiments with
both kinetic energy projectiles and shaped charge warheads.

4.2. Bayesian optimisation ("Autonomous BO")

BO has been demonstrated to find a system optimum in fewer
experiments than other black box optimisation techniques such as
e.g., evolutionary algorithms, Tree Parzen estimator, etc. [37,38]. BO
uses a model-based approach with an adaptive sampling strategy
to minimise the number of experiments required. The black box
function is typically modelled with a Gaussian Process (GP), a
regressionmodel that simultaneously provides the predictedmean,
mtðxÞ, and the epistemic uncertainty, stðxÞ at any point x in the input
space, given a set of observations D 1:t ¼ fðx1; y1Þ; ðx2; y2Þ;…ðxt ; ytÞ
g where xi is a combination of design input variables and yi is the
corresponding system output. Adaptive sampling [39] is a process
that progressively determines the ideal conditions for experimen-
tation by balancing two criteria: exploration e to reduce the un-
certainty of the surrogate function of the system, and exploitatione

to maximise the value of the optimisation objective. These objec-
tives are analogous to the evaluation of designs near known, good
solutions (exploitation) and the evaluation of novel designs that are
unlike those that have previously been evaluated (exploration). A
schematic of the Bayesian optimisation workflow is provided in
Fig. 10.

For this project we utilised a constrained, single-objective BO
methodology. A GP surrogate model was used to predict the
probability that the ERA designs would meet the DoP constraint of
<40 mm for each of the two threats. The objective was to minimise
the line-of-sight weight of the ERA, represented by the areal den-
sity (AD), for which an analytical solution exists, i.e., given an ERA
design, the AD can be analytically computed. The acquisition
function was therefore a product of the expected improvement in
terms of AD reduction over the best-known solution and the
probability that the designwould meet the probabilistic constraint.
This differs from conventional BO in which both the objective and
7

constraint would both be modelled by a GP. To initialise the opti-
misation, we randomly selected three designs from the grid.

4.3. Human-machine teaming ("BO-Muse")

Standard BO assumes no initial knowledge of the system, i.e., the
GP surrogate model is described by a Gaussian prior of mtðxÞ ¼ 0
and stðxÞ ¼ 1 across the entire design space. The GP is initialized by
a limited number of experiments/sample points, in this study
randomly sampled from the design space. The optimisation pro-
gresses through the iterative loop shown in Fig. 10 typically with no
outside input. It is hypothesised that a human with domain
knowledge could accelerate this process. However, complexities
involved in extracting knowledge from the human in a form that
can be exploited by the BO mean that this remains largely un-
proven. Some efforts have been made to incorporate domain-
specific knowledge in BO [41] or transfer learning from previous
experiments [42] with limited success.

In [43] a human-BO collaborative framework is proposed in
which a human's suggestions are incorporated in parallel with that
of the BO acquisition function during the adaptive sampling step in
Fig. 10. In the balancing of optimisation objectives introduced in
section 4.2 humans have been shown to be highly skewed towards
exploitation [44]. When the task requires specialised human ex-
perts, as might be expected for an applied engineering problem like
armour design, the balance swings further towards exploitation.
External stimuli have been shown to boost human creativity,
possibly providing a means to escape this exploitation-skewed
dilemma [45] known as cognitive entrenchment. BO-Muse is a
formal framework for inserting BO into a human expert's workflow,
i.e., the optimisation is 'led' by the human and the BO-generated
suggestions are intended to stimulate their creativity, breaking
them free from their entrenched, exploitation-heavy, sampling
strategy. The BO-Muse workflow is schematically shown in Fig. 11.

The objective function used in the BO-Muse methodology was
identical to that used for the autonomous BO methodology,
described in section 4.2. In terms of the BO-Muse framework this
means that the BO suggestions were based on a 'balanced' objective
of maximising the improvement in the best-found ERA solution
(i.e., maximise the reduction in weight) and providing the largest
improvement in the surrogatemodel (i.e., minimise the uncertainty
in the GP surrogate model). This is different to the strategy used in
Ref. [24], for example, which used an 'exploratory' strategy for the
BO. The BO-Muse optimisation was performed in batches of two:
one suggestion from the human and one suggestion from the BO.

The role of the human in the BO-Muse team was fulfilled by a
doctoral student from the ISL with a Master's degree in engineer-
ing. At the time of this study, they had 3 years of terminal ballistics
experience, albeit none working directly with ERA. They have
experience performing numerical simulations and ballistic exper-
iments with kinetic energy projectiles and fragments and a basic
knowledge of the general working principles of ERA.

5. Results

As the entire design gridwas simulated prior to the optimisation
we can definitively list the best valid solutions according to the
numerical model (where valid indicates that the ERA met the re-
sidual penetration requriement for both threats). The top 5 valid
solutions are provided in Table 4 together with the best flyer plate
material-specific valid solutions.

Given the quantitative inaccuracy of the simulation models (see
section 3.2) it is difficult to state whether the results shown in
Table 4 are true. However, we can assess their reasonableness by
considering the experimental findings reported in section 3.2 and



Fig. 10. An overview of Bayesian optimisation from Ref. [40]. An unknown function is approximated by a Gaussian process (GP), from which an acquisition function makes sug-
gestions for the next experimental condition to be evaluated, xt. The experimental results, yt, are used to update the GP surrogate model, and an iterative, adaptive sampling loop is
executed until the optimisation objective is achieved or the experimental budget is exhausted.

Fig. 11. A framework for collaborative teaming of humans with domain knowledge and
Bayesian optimisation after Ref. [43], referred to as BO-Muse, in which adaptive
sampling is performed according to suggestions by both the human and BO acquisition
function.

Table 4
Details of the optimum ERA designs (i.e., minimum line-of-sight areal density with resid

Rank Angle/ (�) Layer 1 Explosive

Mat. t /(mm) t /(mm)

1 50 Dyneema HB26 10 8
2 60 Dyneema HB26 10 6
3 60 Dyneema HB26 10 8
4 50 Dyneema HB26 10 8
5 40 Dyneema HB26 10 8
10 50 Dyneema HB26 10 8
18 50 ARMOX500 4 8
43 50 ARMOX500 4 8
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Ref. [17]. From Fig. 8 we find that the C3 configuration, i.e., the only
experimental configuration with a Dyneema HB26 flyer plate,
provided the best residual penetration results of the three config-
urations tested. The line-of-sight AD of the three experimental
configurations was 154, 121, and 168 kg/m2 for the C1, C2, and C3
configurations, respectively. Thus, the best performing configura-
tion, C3, was also the heaviest. Nonetheless, for a modest increase
in areal weight between the C1 and C3 configurations (14 kg/m2 or
8% increase) a significant reduction in the SC residual DoP was
achieved (40 mm or 35%). For the majority of the simulations, we
observed that the SC was the dominant threat (i.e., higher residual
penetration than the KE threat). The effectiveness of the Dyneema
HB26 against the SC observed in the C3 experiments, therefore,
suggests that the optimum results identified from the simulations
and reported in Table 4 are reasonable.
ual penetration for both threats <40 mm) according to the numerical simulations.

Layer 3 ADLoS /(kg$m-2) Result, DoPWP

/(mm)

Mat. t /(mm) KE SC

Dyneema HB26 10 47.9 38.5 34.7
Dyneema HB26 10 56.0 37.9 34.9
Dyneema HB26 10 61.6 36.5 26.8
Dyneema HB26 20 63.2 34.8 34.2
Dyneema HB26 30 65.8 34.0 37.2
ARMOX500 4 81.5 20.5 34.9
Dyneema HB26 20 96.8 31.7 30.3
ARMOX500 4 115.1 28.7 32.5
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5.1. Expert

During the optimisation the expert would select an ERA design
based upon their experience, incorporating any additional sources
of information available such as reference publications, semi-
analytical models, etc. The simulation results for that design
would be provided to the expert in the form of residual DoP values
for each threat, together with still frames and videos from the
simulations. The expert would review the result and then select the
next design for evaluation.

The expert achieved a best solution weight of 81.5 kg/m2 in 11
evaluations, the results for which are provided in Table 5. During
the optimisation the expert was asked to document the motivation
behind their designs, so we have some insight into their thought
process. We can observe that, in general, the expert changed one
input variable in each iteration, e.g., the thickness of the explosive
layer, the front flyer plate material, the flyer plate thickness, etc.
Based on their domain knowledge, their design basis was aimed to
achieve a relatively heavy rear flyer plate with low velocity for
effective performance against the KE projectile and a relatively light
front flyer plate with high velocity for for effective performance
against the SC jet. Additionally, based on an understanding that ERA
performance is typically proportional to impact obliquity, high
obliquity design options were preferred.

Although directed to evaluate up to as many as 50 designs, the
expert stopped after the 11 shown in Table 5 as this is what they
would have done in "a real study". After the conclusion of the study
the expert was provided with details of the optimum ERA solution,
towhich they stated that theywould not have considered Dyneema
HB26 for both flyer plates as they had never seen such a design in
literature or other research projects.
5.2. Autonomous BO

As BO can be sensitive to the initialisation condition, 20 runs of
the autonomous BO strategy were performed. Each optimisation
ran for 30 iterations. In 16 of the 20 runs the optimal solution with
an AD ¼ 47.9 kg/m2 was identified. The other four runs failed to
identify a single valid solution in the 33 designs evaluated (3 initial
designs þ 30 iterations). The median number of design iterations
required to identify the optimum solution was 15 across the 20
optimisation runs. A comparison of the 20 optimisation runs is
shown in Fig. 12. The median and mean of the best-found result,
calculated at each iteration for the 20 optimisation runs, is also
plotted, together with the upper (75%) and lower (25%) quartile
range.
Table 5
Results of the expert/trial-and-error design optimisation. The best-found solution is sho

# Angle /(�) Layer 1 Explosive Layer 3

Mat. t /(mm) t /(mm) Mat.

1 60 ARMOX500 4 4 ARMOX
2 60 ARMOX500 4 6 ARMOX
3 60 Dyneema HB26 20 6 ARMOX
4 60 Dyneema HB26 20 4 ARMOX
5 60 Dyneema HB26 10 4 ARMOX
6 60 Dyneema HB26 10 4 ARMOX
7 60 Dyneema HB26 10 6 ARMOX
8 50 Dyneema HB26 10 6 ARMOX
9 50 Dyneema HB26 10 8 ARMOX
10 50 Dyneema HB26 10 8 ARMOX
11 40 Dyneema HB26 10 8 ARMOX
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5.3. BO-Muse

The BO-Muse strategy found the optimal solution on the 5th
iteration (10th sample). The results of the BO-Muse optimisation
are given in Table 6. We can observe that the optimal solution was
identified by the BO. We also can observe that the human expert,
like the expert in section 5.1, typically changes one variable at a
time, e.g., the thickness of the ARMOX500 rear flyer plate, the
thickness of the front Dyneema HB26 flyer plate, etc. The expert
does not appear to have adjusted their strategy much as a result of
the BO suggestions, although it is difficult to verify as the expert did
not provide the motivation behind their designs during the opti-
misation activity. We can observe some similar behaviour to the
other human expert, e.g., utilising their domain knowledge to
provide a design that has high obliquity, a lighter front flyer plate
(for high velocity) and a heavier rear flyer plate (for lower velocity).
6. Evaluation

The performance of the different optimisation methodologies is
compared in Fig. 13. The BO-Muse methodology is shown to iden-
tify the optimum solution in the least number of sample evalua-
tions (10). The autonomous BO methodology requires, per its
median performance, an additional 5 sample evaluations, but also
fails to identify any valid solutions in 4 of the 20 optimisation runs.
The four autonomous BO runs that failed to find the optimum so-
lution can be explained by the large number of design variants
which had a simulated DoP >80 mm for the SC threat (1187/1792
variants). In these four runs not one design was identified that met
the penetration criteria over the 30 iterations plus 3 random initial
designs. If BO is unlucky and no valid points are identified during
the initialisation then the surrogate model has no valid points to
regress, resulting in poor performance. This is a strength of the BO-
Muse framework as experts are good at identifying valid solutions,
even heavy ones, that will provide the necessary initial points for
the GP surrogate model to function. The expert's trial-and-error
methodology is shown to identify lighter weight solutions more
quickly than autonomous BO, but is unable to identify the system
optimum, instead ending with a best-found solution of 81.52 kg/m2

(70% heavier than the actual system optimum). By evaluating the
expert's documented design motivation, we can identify clear
'cognitive entrenchment', as expected for an expert with consid-
erable domain expertise. The BO-Muse strategy, which shows
comparable performance to the human expert for the initial ~7
samples, successfully overcome this limitation.

The objective of the study was to evaluate the performance of
wn in bold.

ADLoS /(kg$m-2) Result, DoPWP

/(mm)
Valid result?

t /(mm) KE SC

500 8 199.6 9.9 51.3 N
500 8 205.2 23.0 23.4 Y
500 8 181.6 7.8 17.8 Y
500 8 176.0 6.0 42.1 N
500 8 156.4 3.0 31.8 Y
500 6 125.0 3.9 44.2 N
500 6 130.6 10.7 29.5 Y
500 6 101.6 4.6 48.0 N
500 6 105.9 4.7 36.8 Y
500 4 81.5 20.5 34.9 Y
500 4 68.4 10.6 56.2 N



Fig. 12. Results of 20 runs of the autonomous BO methodology. Each optimisation is initialized with three random samples from the design grid and run for 30 iterations. The
median result is shown by the long black dashed line, the mean result is shown by the dotted line, and the upper and lower quartile is shown by the shaded region.

Table 6
Results of the BO-Muse design optimisation. The best-found solution is shown in bold font.

# Source Angle /(�) Layer 1 Expl. Layer 3 ADLoS /(kg$m-2) Result,
DoPWP /(mm)

Valid result?

Mat. t /(mm) t /(mm) Mat. t /(mm) KE SC

1 Human 60 Dyneema HB26 40 4 ARMOX500 6 183.8 10.6 24.0 Y
2 BO 0 Dyneema HB26 10 2 Dyneema HB26 10 22.4 50.4 80.0 N
3 Human 60 Dyneema HB26 40 4 ARMOX500 4 152.4 22.2 27.8 Y
4 BO 40 Dyneema HB26 30 4 ARMOX500 4 86.7 16.6 80.0 N
5 Human 60 Dyneema HB26 20 4 ARMOX500 4 113.2 21.0 49.8 N
6 BO 0 ARMOX500 4 8 Dyneema HB26 10 52.4 46.5 80.0 N
7 Human 60 Dyneema HB26 20 6 ARMOX500 4 118.8 20.6 32.8 Y
8 BO 60 Dyneema HB26 10 8 Dyneema HB26 10 61.6 36.5 26.8 Y
9 Human 60 Dyneema HB26 10 6 ARMOX500 4 99.2 29.2 28.5 Y
10 BO 50 Dyneema HB26 10 8 Dyneema HB26 10 47.9 38.5 34.7 Y

Fig. 13. Comparing the expert, autonomous BO, and BO-Muse optimisation strategies.
The expert and BO-Muse optimisations can only be performed once, so the perfor-
mance curve is deterministic compared to the probabilistic autonomous BO curve,
which represents the median (orange line) and upper and lower quartiles (shaded
region) from 20 optimisation runs.
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different optimisation methodologies on the design problem
defined in section 2. For 'simple' experimental design problems in
which the number of variables is low it is expected that the trial-
and-error methodology employed by human experts is unbeat-
able due to the ability of humans to conceptualise and simplify
complex systems, particularly in the neighbourhood of known so-
lutions. As the complexity of the design space increases, it is
hypothesised thatmethodologies like BO or BO-Muse becomemore
10
competitive, eventually overtaking the performance of an expert
trial-and-error approach. In the design of the threat conditions for
this project the goal was to select KE and SC surrogates that pro-
vided relatively comparable lethality against ERA designs. Avoiding
a dominant threat would mean that the optimisation methodolo-
gies would have to consider both threats throughout, rather than
down-selecting to a dominant threat, designing a solution to defeat
it, and then verifying its performance against the secondary threat.
Unfortunately, this was not achieved. Rather, the SC threat was
clearly dominant for the vast majority of potential ERA designs in
the grid. As such, the optimisation was likely easier than intended,
which we expected to favour the expert trial-and-error approach.
For an 'easy' optimisation problem in which we expect a human
expert to outperform the autonomous BO methodology, we would
also expect the BO-Muse methodology to be uncompetitive as the
BO suggestions would use up samples that would be less useful
than the human equivalents. Comparing the results in Fig. 13 sug-
gests that even though the SC threat was dominant, the design
problem was still sufficiently complex for the BO suggestions to
positively contribute in the BO-Muse framework.

The numerical simulations were shown in section 3.2 to provide
reasonable qualitative agreement with the experiments, including
retaining the performance ranking of the three configurations
experimentally evaluated against both the KE and SC threats.
However, the quantitative accuracy of the simulations was insuf-
ficient. As the entire optimisation was performed using simulation
data, it is feasible that the inaccuracy of the simulations may
disadvantage the human expert if the relative performance of the
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different designs is not representative of their actual performance.
In this event, simulation results may conflict with the existing
schema of the expert, built upon more than a decade of experience
with experimental measurements. This is a clear limitation of this
study. In a more typical optimisation study simulations would be
performed on demand, when selected by the human expert or BO
algorithm. In such a study there would be orders of magnitude
fewer simulations to be performed and, as such, higher resolution
simulations with longer run times (and greater accuracy) would be
feasible.

7. Conclusions

Three competing optimisation strategies were used to design a
minimum weight explosive reactive armour (ERA) to reduce the
penetration of a surrogate medium calibre kinetic energy (KE) long
rod projectile and a PG-7 surrogate shaped charge (SC) warhead to
<40 mm into a semi-infinite witness block of rolled homogeneous
armour steel (RHA). The ERA design variables included: material
and thickness of the front and rear flyer plates, thickness of the
explosive layer, and rotation angle of the arrangement, relative to
the flight path of the two threats. The total number of potential ERA
designs available for the optimisation was 1792. The optimisation
was performed using experimentally validated numerical simula-
tions that were demonstrated to provide qualitatively accurate
predictions that maintained relative performance rankings of three
experimentally evaluated designs.

A human expert with 13 years' experience in terminal ballistics
and armour design applied a trial-and-error optimisation meth-
odology, representative of best practise within ISL and many other
large Defence research laboratories. The second optimisation
approach utilised an adaptive Bayesian optimisation (BO) meth-
odology with no human input. The third optimisation approach
utilised a novel human-BO teaming framework referred to as BO-
Muse, utilising a different human with 3 years' experience in ter-
minal ballistics.

The human-machine teaming framework (BO-Muse) was
shown to outperform both the stand-alone human and stand-alone
machine (BO). Incorporating the human suggestions in the BO-
Muse framework was found to improve the convergence rate of
the optimisation compared to standard BO, based on the median
result across 20 BO optimisation runs. The BO-Muse teaming
approach was also demonstrated to improve upon the performance
of the human expert employing a traditional trial-and-error
methodology, which showed an improved rate of convergence
initially compared to standard BO (i.e., found lighter weight solu-
tions faster), but failed to find the true system optimaewith a best-
found solution 70% heavier than that identified by the BO and BO-
Muse methodologies.
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