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A B S T R A C T   

Numerous studies have been conducted on the decomposition mechanisms of cellulose nitrate (NC), a polymer 
employed in double base (DB) rocket propellants. It is well known that storage temperature affects the lifetime of 
these energetic formulations. However, less studies have been published on the influence of water. This research 
examined the role of water on the stabiliser consumption rate during accelerated ageing of a DB rocket pro-
pellant, as well as the impact on the shelf life prediction of the energetic formulation. Different volumes of water 
(0.8, 1.6, 2 and 4 µl/g) were added to the propellant in sealed vials, which were then isothermally aged (70, 80, 
90, 100 ◦C). Analyses of the stabiliser consumption showed a faster decomposition kinetics in presence of water 
which is indirectly linked to the shortening of the storage life of the NC based propellant by 35 %. For the 
conditions, an activation energy of 133 ± 4 kJ/mol was reported for the water catalytic decomposition mech-
anism. A numerical model that included water as a variable was reported to reduce the uncertainty in the 
determination of the service life of NC based propellant. International standards such as Allied Ordnance Pub-
lication 48 should not overlook the effect of water/moisture on the safety of ammunition containing NC and 
should implement a modified Arrhenius equation.   

1. Introduction 

1.1. Double base rocket propellant decomposition process 

Double base (DB) rocket propellants are formulations composed of 
aliphatic nitrate esters such as cellulose nitrate (NC) and nitroglycerin 
(NG) [1,2]. The influence of temperature on the stability of these en-
ergetic materials has been largely investigated but the impact of hu-
midity is less studied. The presence of water/moisture in this type of 
propellant is primarily due to the manufacturing process; even with a 
good drying process, it is possible to find up to 1% w/w of water 
remaining [3]. Rocket motors usually have environmental seals bonded 
to the nozzle outlet, usually with polymer resins. However, these resins 
as well as the O-rings used to seal the rocket motor from the environ-
ment can degrade, allowing moisture to enter the system [4,5]. 

DB rocket propellants undergo either an intrinsic or autocatalytic 
decomposition process. The intrinsic decomposition starts with the ho-

molytic cleavage of the O–NO2 bonds, causing NC denitration and a 
release of nitrogen oxides (NOx) [6,7]. It always occurs [8] and has two 
primary mechanisms: i) hydrolysis (Eq. (1) and 2) and ii) thermolysis 
(Eq. (3)) [9]. 

R − O − NO2 + H2O ̅̅→
H+ R − OH + HNO3 (1)  

R − OH + HNO3→R’ − CHO + NO2 + H2O (2)  

R − O − NO2→RO. + NO2 (3) 

According to Vogelsanger [10] and Katoh et al. [11], the presence of 
water catalyses hydrolysis, which promotes the hydrolytic splitting of 
the O–NO2 bond in the nitrate esters. When the released NOx radicals 
react with the water in the system, acids are produced which further 
catalyse the decomposition reaction [12,13]. 

At low temperatures, such as those seen in propellant storage, hy-
drolysis is the dominant process, and as the temperature increases, so 
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does the rate of decomposition through hydrolysis [8]. However, with 
increasing temperature, the second decomposition process known as 
thermolysis becomes the dominant decomposition mechanism at tem-
peratures over 60 ◦C [14,15]. It is also worth emphasising that the 
findings presented by O’Keefe et al. [16] show that the presence of water 
in NC-based propellants at temperatures above 60 ◦C does not affect the 
decomposition kinetics of the thermolysis reaction. 

A third decomposition pathway (Eq. (4)) is when the NOx reacts with 
the DB propellant, giving rise to more NOx and, in the case of NC, 
reducing its molecular mass [8,10]. This autocatalytic reaction results in 
the generation of more decomposition products, thus massively accel-
erating the decomposition process [17]. In the literature, there is 
nothing that indicates Eq. (4) is catalysed by the presence of water. 

R − O − NO2 + NO2→RO. + 2NO2 (4) 

Autocatalysis generates heat that increases the internal temperature 
of the propellant and taking into consideration that DB propellants are 
poor conductors of heat [18,19], if the heat produced by the energetic 
formulation is greater than the heat it can release, self-ignition can 
occur. This is more likely to happen with high storage temperatures and 
large propellant grain diameters [20,21]. 

Chemical stabilisers are added to DB propellants to slow the auto-
catalytic decomposition process by reacting with the NOx produced 
during the decomposition of the propellant [22,23]. These substances 
are usually aromatic amines or urea derivatives which, through nitro-
sation and/or nitration reactions, are able to bind the generated NOx to 
their molecular structure [24,25]. A change in concentration of the main 
stabiliser over time is an indicator of the ageing that is occurring within 
the energetic formulation [26]. Therefore, the reduction in main stabi-
liser effectiveness is an indirect measure of the NC-propellant decom-
position kinetics. This is studied using accelerated thermal ageing, 
solvent extraction and quantification via liquid chromatography [27, 
28]. 

1.2. Kinetic model of the consumption of stabiliser contained within 
double base propellants 

The controlled ageing of the propellant aims to measure the per-
centage loss of stabiliser, or stabiliser conversion (α) which is defined in 
the following equation [29]: 

α =
%wo − %wi

%wo − %wf
(5)  

where % wo, % wi, and % wf are the percentages of stabiliser present at 
the start, at time t, and at the end of the test. 

In order to study the reaction kinetics of a thermally stimulated 
process, such as accelerated ageing, the following equation is used [30]: 

dα
dt

= k(T)f(α) (6)  

where dα/dt is the reaction rate, f(α) is the reaction mechanism function, 
and k(T) is the reaction rate constant as temperature function which is 
obtained from the Arrhenius equation below [28]: 

k(T) = Aexp
(

Ea

RT

)

(7)  

where A is the pre-exponential factor, Ea is the activation energy (J/ 
mol), T is the temperature expressed in absolute scale (K), and R is the 
gas constant (8.314 J/mol K). 

The expressions shown in Eq. (6) can be written in their integral form 
[31]: 

g(α) =
∫1

0

dα
f(α) =

∫t

0

k(T)dt = Aexp
(

Ea

RT

)

t (8)  

where g(α) is the reaction mechanism function expressed in integral 
form. 

There are a variety of models for determining the mechanism func-
tion (both differential and integral) that depend on the reaction order n 
which, for NC base propellant decomposition processes, ranges from 
zero to two [32,33]. Table 1 shows the principal models that depend on 
the reaction order. 

Despite work being done by Eerligh et al. [34] and Teixeira et al. [35] 
on the effects of water/moisture on the consumption of the stabiliser 
present in NC-based propellants, no kinetic model applied to propellants 
has been developed to include the effects of moisture/water on DB 
propellants. 

The aim of this paper was to propose a new kinetic model which 
includes water for improved life assessment of rocket motors. The level 
of stabiliser was monitored in a rocket propellant artificially aged at 
different temperatures and humidity/water concentrations. 

2. Material and methods 

An extruded DB propellant A (NC 5–57 %w/w, NG 19–46 %w/w, 2- 
NDPA 1–8 %w/w, and copper oxide 0–3 %w/w) was used in this study. 
The propellant was previously stored for 15 years (< 20 ◦C). The pro-
pellant was cut from a billet (ø 40 mm x 38 mm), sieved (<3 mm) and 
stored in a vacuum desiccator for 48 h to remove residual moisture. The 
propellant was then added to 4 ml vials (loading density 0.83 g/cm3) 
with deionized water (2, 4, 5 or 10 µl), and sealed. The water volume is 
reported normalised to propellant mass: 0.8, 1.6, 2 and 4 µl/g. Propel-
lant A was aged at 70, 80, 90 and 100 ◦C for up to 49, 36, 10 and 5 days 
respectively. 

For high-performance liquid chromatography (HPLC) analysis, 
CH3CN (125 ml) was added to 0.5 (± 0.001) g of propellant sample and 
shaken for 4 h. An aqueous solution of CaCl2 (25 ml of a 2% w/w) was 
added to precipitate out the NC. A portion of the supernatant liquid was 
then filtered through a 0.2 µm nylon filter into a HPLC vial. The chro-
matographic conditions used are shown in Table 2. External calibration 
reference standards 2-NDPA (99.5 % purity) and 2,4-DNDPA (99.5 % of 
purity) from Sigma-Aldrich Corporation were used. Ageing time is re-
ported as 25 ◦C equivalence as described in AOP-48 ed2 [36].. 

3. Results and discussion 

3.1. Stabiliser depletion results 

Samples (Fig. 1) with the highest water content (4 µl/g) have a 10- 
year effective stabiliser content which is at least 35 % lower than 

Table 1 
Kinetic mechanism functions [31].  

Model f(x) g(x) 

Zero order α 1 
First order 1 − α − ln(1 − α)
Second order (1 − α)2 [

1
(1 − α)

]

− 1   

Table 2 
HPLC conditions for stabiliser depletion analysis.  

Instrument Waters Alliance 2695 

Module Column Kinetex 5µ XB-C18 100 Å @ 30 ◦C 
Mobile phase 40 % CH3CN, 60 % H2O +0.1 % HCOOH 
Flow rate 1.5 ml/min 
Detector Waters 996 PDA 
Wavelength 254 nm 
Injection 10 µl 
Replicates 2 per sample  
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samples without added water and they failed the AOP-48 ed2 10-year 
equivalent storage criteria at all temperatures tested. Samples with a 
concentration of 1.6 and 2.0 µl/g of water have a very similar shelf life, 
reaching the permitted effective stabiliser limit in an equivalent period 
of 12 years. Finally, samples with low water concentration (0 and 0.8 µl/ 
g) have a longer shelf life, being safe for use for more than 14 years. 

Stabiliser depletion rate increases with increasing water concentra-
tion at all temperatures (70–100 ◦C), implying that the NC decomposi-
tion reaction is catalysed by water [37]. Drzyzga [38], Meng, and Caddy 
[39] have reported that diphenylamine (DPA) and ethyl centralite (EC) 
are not hydrolysed in the presence of water; we assume that 2-NDPA is 
also stable towards hydrolysis. 

At 100 ◦C the 2-NDPA consumption is fastest, and none of the sam-
ples tested pass the 10-year 25 ◦C equivalence ageing criterion. Ac-
cording to Manelis [40] and Brill and Gongwer [41], for temperatures 
above 100 ◦C, the dominant mechanism of decomposition for DB pro-
pellant is autocatalysis, a reaction characterised by increased NOx pro-
duction (see Eq. (4)), which explains the accelerated consumption of the 
stabiliser even at an effective stabiliser concentration [37]. 

Fig. 2 shows that the formation of one of the secondary stabilisers 
(2,4-DNDPA) between 70 and 100 ◦C has very similar trends than 2- 
NDPA. The higher the water content in the samples, the higher the 
concentration of the secondary stabiliser 2,4-DNDPA. It is worth noting 
that in all cases, the samples with the highest water content (4 µl/g) have 

the fastest rate of 2,4-DNDPA production. 

3.2. Stabiliser depletion kinetics 

Based on previous reported work stabiliser consumption is consid-
ered as a first order model [33,42]. Therefore, substituting the first order 
function shown in Table 1 into Eq. (8): 

− ln(1 − α) = kt = Aexp
(

−
Ea

RT

)

t (9) 

The stabiliser consumption conversion is determined from the failure 
criterion set by AOP-48 ed2 (α=20 % effective stabiliser content) and t is 
the time to reach α. Table 3 shows the values of k obtained for the 
different temperatures at which the samples were tested with a water 
content of 0.8 µl/g water. 

The results obtained from the kinetic analysis (Fig. 3) show that the 
activation energy (133 ± 4 kJ/mol) for the five different water con-
centrations are equivalent. The literature [8,43] indicates that the 
decomposition mechanism cannot be hydrolysis, since this process oc-
curs with Ea >120 kJ/mol, therefore thermolysis is more likely. How-
ever, as previously discussed, thermolysis is not influenced by water, 
suggesting the autocatalytic reaction is the main reaction observed. [16, 
37]. 

Waterman [44] and Li et al. [45] have employed a combined model 

Fig. 1. Influence of water concentrations on the stabiliser depletion (2-NDPA) curves at 70–100 ◦C. Time plotted as 25 ◦C equivalent storage time. The dotted lines 
represent the two acceptance criteria for a 10-year equivalence storage as described in AOP-48 ed2 [36]. 
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taking into account moisture/water content to study the degradation 
and stability of different materials related to pharmaceutical and food 
industry. The modified Arrhenius equation used is as follow: 

k(T) = Aexp
(

−
Ea

RT

)

+ (C⋅wc) (10)  

where C is the water content constant and wc is the water content. 
The findings in Fig. 4 validate that there is a strong connection 

Fig. 2. Influence of water concentrations on the secondary stabiliser product (2,4-DNDPA) concentration at 70–100 ◦C. Time plotted as 25 ◦C equivalent stor-
age time. 

Table 3 
Kinetic parameters for 0.8 µl/g samples at different temperatures.  

Temperature ( 
◦C) 

Time to reach 20 % effective stabiliser 
(s) 

k (s− 1) ln k (s− 1) 

100 95,040 2.35e- 
6 

− 12.96 

90 380,160 5.91e- 
7 

− 14.34 

80 1,261,440 1.78e- 
7 

− 15.54 

70 4,168,800 5.37e- 
8 

− 16.74  

Fig. 3. Influence of water concentration on activation energy of stabiliser 
depletion (70–100 ◦C). 
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between k and water content in the samples in the temperature ranges 
used in the experiments, hence the value obtained for the moisture 
constant C is 0.097 +/- 0.0015 g/µl. As a result, Eq. (10) is valid for 
establishing the stabiliser depletion kinetics under temperature-water 
content conditions. By substituting the data from the previous graphs 
into Eq. (10), the reaction rate equation is as follows: 

ln|k| = −
133kJ/mol

RT
+ ln|29| + [0.097g / μl⋅WC] (11) 

The activation energy is equivalent to previously published heat flow 
calorimeter (HFC) data [37] of the same propellant samples (Table 4). 

4. Conclusions 

Water is a significant factor in sealed vial experiments in which the 
autocatalytic secondary reaction mechanism plays an important role in 
the lifetime of the double base rocket propellant. The reduction in main 
stabiliser is an indirect method for assessing the chemical life for NC 
propellants. The result from this methodology shows that increasing 
water concentration decreases the life of the propellant by 35–43 %. 
Accelerated ageing has shown that the presence of water promotes 
autocatalysis as the main decomposition reaction of a DB rocket pro-
pellant. Samples with the highest water concentration (4 µl/g) decreased 
in life from 14 years to only 8 years (25 ◦C equivalency), compared to no 
added water. 

This study has shown that it is necessary to consider more than just 
temperature when analysing the life of NC propellants. We proposed a 
modified Arrhenius equation including the effect of water for improved 
life assessment of rocket motors. Currently, standards such as Allied 
Ordnance Publication (AOP)− 48 ed2 do not consider water/moisture 
presence as a major factor in the decomposition of NC-based propellants. 

Implementing a modified Arrhenius equation that includes the water as 
a variable reduces the uncertainty in the chemical and the mechanical 
degradation of propellant, increasing the safety, life and reducing the 
overall costs of the rocket motor. 
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