
Journal Pre-proof

Current development and future prospects of multi-target assignment problem: A
bibliometric analysis review

Shuangxi Liu, Zehuai Lin, Wei Huang, Binbin Yan

PII: S2214-9147(24)00222-8

DOI: https://doi.org/10.1016/j.dt.2024.09.006

Reference: DT 1514

To appear in: Defence Technology

Received Date: 28 June 2024

Revised Date: 17 August 2024

Accepted Date: 12 September 2024

Please cite this article as: Liu S, Lin Z, Huang W, Yan B, Current development and future prospects
of multi-target assignment problem: A bibliometric analysis review, Defence Technology, https://
doi.org/10.1016/j.dt.2024.09.006.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

Â© 2024 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd.

https://doi.org/10.1016/j.dt.2024.09.006
https://doi.org/10.1016/j.dt.2024.09.006
https://doi.org/10.1016/j.dt.2024.09.006


Current development and future prospects of multi-

target assignment problem: A bibliometric analysis 

review 

 

Shuangxi Liua,b, Zehuai Linc, Wei Huanga,b,*, Binbin Yanc 

aCollege of Aeospace Science and Engineering National University of Defene Technology, Changsha 

410073, China 

bHypersonic Technology Laboratory, National University of Defense of Technology, Changsha 410073, 

China 

cSchool of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China 

*Corresponding author Email-address: gladrain@163.com. 

Jo
urn

al 
Pre-

pro
of



Current development and future prospects of multi-

target assignment problem: A bibliometric analysis 

review 

 

Abstract 

The multi-target assignment (MTA) problem, a crucial challenge in command control, mission planning, and a fundamental 

research focus in military operations, has garnered significant attention over the years. Extensively studied across various 

domains such as land, sea, air, space, and electronics, the MTA problem has led to the emergence of numerous models and 

algorithms. To delve deeper into this field, this paper starts by conducting a bibliometric analysis on 463 Scopus database 

papers using CiteSpace software. The analysis includes examining keyword clustering, co-occurrence, and bursts, with visual 

representations of the results. Following this, the paper provides an overview of current classification and modeling techniques 

for addressing the MTA problem, distinguishing between static multi-target assignment (SMTA) and dynamic multitarget 

assignment (DMTA). Subsequently, existing solution algorithms for the MTA problem are reviewed, generally falling into three 

categories: exact algorithms, heuristic algorithms, and machine learning algorithms. Finally, a development framework is 

proposed based on the "HIGH" model (high-speed, integrated, great, harmonious) to guide future research and intelligent 

weapon system development concerning the MTA problem. This framework emphasizes application scenarios, modeling 

mechanisms, solution algorithms, and system efficiency to offer a roadmap for future exploration in this area. 

Keywords: Multi-target assignment; Offensive and defensive confrontation; Cooperative operation; Modeling mechanism; 

Solution algorithm; CiteSpace analysis 

 

1. Introduction 

Nowadays, scientific and technological advancements have brought about significant changes in the 

traditional forms of warfare. Information technology, in particular, has transformed mechanized warfare 

into informational warfare [1-6]. The combat forces in informational warfare comprise primarily of 

informational warfare units for both parties involved. For example, in modern air combat, opposing parties 

primarily perform aerial attacks and engage in multi-dimensional combat across land, sea, air, space, and 

electronic dimensions to achieve efficient strikes from multiple levels and directions. This leads to a 

collaborative adversarial situation that presents a multidimensional confrontation, multiple sources of 

information, and the participation of various roles [7-12]. 

As a result, based on information systems that interact with various resources, future warfare will be 

predominantly characterized by system-to-system confrontation [13-18]. Taking Fig. 1 as an example, it 

implies that the outcome of warfare will no longer depend solely on the advancement of single systems 
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or platforms, but also on the degree of cooperation among various combat elements within the system. 

Generally, combat cooperation involves planning, scheduling, and other fields. Precise and efficient 

combat cooperation facilitates the resolution of conflicts and contradictions in multiple dimensions such 

as time, space, frequency, tasks, and effects among different cooperative parties. Furthermore, it 

contributes to the development of high-quality combat action schemes, laying the foundation for achieving 

ideal combat effect-to-cost ratios. 

 

Fig. 1. Decription of cooperative operations. 

Therefore, with the ongoing advancement of future systematic warfare, it is important to study how 

the defending party can effectively assign weapons to attacking targets [19-23] (It also applies to the 

offensive part). This is known as the multi-target assignment (MTA) problem, which is one of the 

fundamental issues in the field of military operational research [24-28]. MTA aims to solve how to optimally 

assign various combat weapons to multiple targets in order to achieve the commander's combat intentions 

[29-31]. It is also a key issue that needs to be addressed in the fields of command and control automation 

and intelligence. The MTA problem was first proposed by Manne when researching ballistic missile 

defense operational optimization, and was initially referred to as the missile allocation problem (MAP) [32]. 

It aimed to assign interceptors to intercept ballistic missiles that were attacking and achieve the most 

optimal protection for the defending party. Since then, the MAP has received wide attention from military 

and academic researchers in fields such as combat operational research, command and control, 

aerospace engineering and automation [33-35], and the basic MAP model has been gradually extended 

to different combat fields, becoming the well-known MTA problem today. 

Indeed, the MTA problem is essentially a class of combinatorial optimization problems with 
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characteristics such as multi-constraints, nonlinearity, and multiple objectives [36, 37]. As the types and 

numbers of weapons and targets increase, the number of solutions will increase exponentially. As one of 

the key links in control decision-making, the real-time, accuracy, and effectiveness of collaborative target 

assignment schemes will directly determine whether better combat effectiveness can be achieved in 

military confrontations and whether operational resources can be minimized. In the 1980s, Lloyd et al. [38] 

proved that the MTA is a non-deterministic polynomial complete (NP-C) problem with multiple parameters 

and constraints. 

Currently, the MTA problem is also facing new challenges and development opportunities with the 

wide application of new technologies and equipment, such as artificial intelligence and unmanned systems 

in the military field. The application of unmanned systems has spawned many new combat styles, such 

as swarm warfare and cross-domain unmanned swarm collaborative warfare. Therefore, studying MTA 

technology under new combat styles based on existing MTA research will be a critical research topic in 

the future intelligent and unmanned combat field. This paper systematically summarizes the current 

development trends in the field of the MTA problem, and prospects for future development directions. The 

main contributions are as follows. 

(I) This paper conducts a bibliometric analysis of studies related to the MTA problem in Scopus from 

1985-2023, using the CiteSpace software to derive insights. The analysis encompasses the annual 

publication amount, keyword clustering, keyword co-occurrence, and keyword bursting. These analytical 

results form the basis for summarizing the current achievements in this field and outlining future 

development trends. 

(2) This paper presents a comprehensive review of the fundamental principles of the MTA problem, 

including classification, analysis and solving algorithms. It examines different aspects like static multi-

target assignment (SMTA) and dynamic multi-target assignment (DMTA). Additionally, a detailed analysis 

of the current solving algorithms in this field is provided, highlighting their respective advantages and 

disadvantages. 

(3) In light of the existing advancements in the MTA problem, a development framework is proposed 

based on "HIGH" model (high-speed, integrated, great, harmonious), with a focus on high-speed 

confrontation demand, integrated modeling ability, great solution for performance, and harmonious 

command and control principles. This framework aims to provide insights for the future research in this 

field. 

The remaining content of this paper is organized as follows. Section 2 provides an overview and 

summary of the MTA problem from three perspectives: development, classification, and algorithm. Section 

3 proposes a development framework for the future direction of the MTA problem based on the "HIGH" 

model (high-speed, integrated, great, harmonious), and main conclusions are presented in Section 4. 
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2. Overview of MTA 

2.1. Development 

In this section, it aims to conduct a comprehensive study on recent trends, primary research directions, 

and accomplishments in the field of MTA problem using the visual analysis approach of the CiteSpace 

software 1 . It employs a general methodology that is suitable for analyzing and understanding the 

progression within different fields [42-46]. In this paper, the literature was collected from the Scopus 

database, and the search strategy utilized the keywords "multi-target assignment", "multi-target allocation", 

"weapon target assignment" or "weapon target allocation". The search period ranged from the inception 

of the database to 20232. After screening and excluding irrelevant literature, a total of 463 papers were 

selected for bibliometric analysis. 

 

Fig. 2. Annual distribution of publications related to the MTA problem. 

Based on the perspective of publication time, statistical analysis was conducted on 463 papers. 

According to the theory of bibliometrics, the distribution of publication years can reflect to some extent the 

research level and development of a field. The annual publication amount is shown in Fig. 2. In general, 

the evolution of the MTA problem can be roughly categorized into three phases. 

(1) Between 1985 and 2004, the number of papers published each year was relatively low, with no 

more than 5 papers per year. This indicates that the research on MTA problems was still in its infancy, 

suggesting a lower level of attention and limited resources and support from the academic community or 

research institutions. 

(2) From 2005 to 2015, there was a certain increase in the publication amount, but it did not exceed 

25 papers per year. This reveals that the research on MTA problems was still in the exploration stage. 

(3) After 2015, the publication amount continued to rise, indicating that the MTA problem has become 

a current hot topic and frontier. 

Then, the data was imported into CiteSpace V.6.1.R6for transformation and analysis: The pruning 

operation was performed using Pathfinder and pruning sliced network methods, with the rest of the 

                                                   
1 CiteSpace is a freely available Java-based tool for visualizing and analyzing trends and patterns in scientific literature, 
particularly in the domain of academic citations [39-41]. It can be downloaded from https://citespace.podia.com/ 
2 The data deadline for bibliometric analysis in this paper is May 2023. Although not the most recent date, trend analysis 

suggests that our conclusions are dependable and robust. Therefore, these data sources remain valid and useful. 
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parameters set to default. Based on the standard parameter settings of CiteSpace software, keyword 

clustering, keyword co-occurrence, and keyword burst analysis were conducted on the 463 papers 

mentioned above. Combining manual reading of the literature and visualization of the data, a detailed 

analysis of the information obtained from the results was conducted. 

Fig.3 presents the result of keyword clustering based on 463 selected papers using CiteSpace 

software. This result consists of 430 nodes and 1013 edges, with a network density of 0.011. The 

clustering module value (Q value) and average silhouette value (S value) are indicators used to evaluate 

the effectiveness of the clustering. It is generally considered that Q ≥ 0.3 indicates a significant clustering 

structure; S ≥ 0.5 suggests a reasonable clustering, and S ≥ 0.7 implies convincing clustering results 

[47-52]. It can be observed that Q = 0.7861 and S = 0.9009, indicating highly significant clustering structure 

and credible results. 

The clustering results of the keywords can effectively reflect various research focuses within the field. 

As shown in Fig. 3, there are 21 labels representing 21 clusters. Each cluster label signifies a group of 

co-occurring keywords within the network. The cluster numbers range from #0 to #20, with higher numbers 

indicating fewer keywords in the cluster and conversely, lower numbers suggesting a larger number of 

keywords within the cluster. It can be observed that clustering numbers #O to #6 mainly focus on 

"optimization". This indicates that for the MTA problem, there are lots of studies centered around 

optimization, with multiple research achievements in this field. Clustering numbers #7 to #9 primarily focus 

on "allocation", highlighting that current WTA issues predominantly involve scenarios like air-to-air and air-

to-ground. Additionally, these issues have progressively evolved from traditional WTA problems to 

encompass multi-stage WTA challenges. On the other hand, clustering numbers #10 to #20 predominantly 

concentrate on "constraints", encompassing aspects such as real-time processing, group targets, motion 

tracking, probability functions, and more. This suggests that scholars in the present stage are gradually 

shifting their research on the MTA problem from traditional optimization problems to addressing multi-

objective optimization problems that consider the coupled influence of multiple constraint conditions. The 

research scenarios become more complex and closer to real combat situations. 

The co-occurrence results of keywords provide a visual representation of the temporal evolution of 

their distribution and highlights the dynamic nature of the research frontier, which showcases the dynamic 

trends and provides insights for predicting future developments. As shown in Fig. 4, the horizontal axis 

represents the years, while the keywords are arranged in different time zones based on their first 

appearance. Notably, "multi-target assignment" has been a prominent research area since 1985. Over 

time, an increasing number of keywords emerge, indicating the continuous expansion of research fields 

and the incorporation of multiple disciplines. From a temporal perspective, the focus of WTA problems 

evolved significantly between 2000 and 2010. During this period, research primarily addressed simple 
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single-objective scenarios, with solving algorithms predominantly relying on traditional heuristic methods. 

However, after 2015, the emphasis shifted towards multi-objective and multi-stage scenarios. 

Consequently, the algorithms developed during this later period began to incorporate learning-based 

approaches. These findings suggest promising research prospects in the MTA domain. 

The keyword burst indicates that a potential topic has attracted special attention from scholars during 

a certain period. It can be used to identify emerging trends in research fields and reflect the time variation 

of research focus in a particular field [53, 54]. Extracting the top 20 keywords in terms of burst intensity, 

the *burst words" in this field from 1985 to 2023 are shown in Fig.5. In this result, "Begin" represents the 

year when the core topic surged, "End" represents the year when it sharply declined, and "Strength" 

represents the burst intensity. It can be observed that scholars have conducted extensive research on 

MTA problems, and there is a high overlap in the clustering keywords, indicating close collaborative 

connections within the field and comprehensive and in-depth research. Furthermore, the keyword 

"optimization" appears consistently throughout the period from 1985 to 2023, indicating that most existing 

research treats MTA as an optimization problem, which aligns with the understanding of this problem from 

a military perspective. 

 

Fig. 3. Result of keyword clustering. 
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Fig. 4. Result of keyword co-occurrence. 

 

Fig. 5. Result of keyword burst. 

2.2. Classification 

Based on the introduction of time variables, existing MTA problems can be divided into two categories: 

SMTA and DMTA problems. SMTA aims to solve the target assignment plan for the moment based on the 

current offensive and defensive situation. Specifically, since it does not take time factors into account, the 

allocation results are instantaneous. However, DMTA introduces time variables and thus can be regarded 

as the multi-stage assignment of targets. The first stage is similar to SMTA, while the subsequent target 

allocation plan is influenced by the effectiveness of the attack in the previous stage, and the remaining 

weapons are used to continue allocating to targets that have not yet been effectively attacked. 
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Fig. 6. The target allocation process of MTA problems. 

2.2.1. SMTA 

The premise of the SMTA problem is generally based on the assumption that all detection information 

of incoming targets has been obtained, including the number of targets, payload, reachable attack range, 

and other attributes. Moreover, the number and attributes of the targets are assumed to remain constant, 

as well as the allocated interceptor group. On this basis, SMTA problems complete target interceptions 

immediately after the allocation schemes are generated, without considering changes in the battlefield 

situation. Therefore, it can be simplified as a nonlinear integer programming problem under predefined 

constraints. Assuming that there are m interceptors and n incoming targets, with m ≥ n  to ensure 

sufficient interceptor coverage for each target. The following constraints are generally considered as well. 

Assumption1. [55] Each interceptor must be assigned to at least one target. 

Assumption 2. [56] Each interceptor can be assigned to at most one target. 

In SMTA problems, only one allocation calculation is considered. Thus, based on the look-shoot 

strategy, the target allocation process of the SMTA problem is illustrated in Fig. 6(a). Here, a typical SMTA 

modeling framework is presented. In the SMTA process, the defense party can use detection information 

to estimate the threat level of all incoming targets, thereby determining the interception priority for each 

target. The threat level of each target in the group is defined as T = [T1, T2, …, -Tn]. Therefore, the 

interceptor-target allocation scheme can be described as 

11 1

1

... n

ij

m mm

z z

z

z z

 
 

=  
 
 

Z                 (1) 

where 1 ≤ i ≤ m and 1 ≤ j ≤ n denote the i-th interceptor and the j-th target, respectively. zij denotes 

the weight of allocating target j to interceptor i, with a value of either O or l. Specifically, if zij = 0, it indicates 

that target j is not allocated to interceptor i.  

Given the information on target and interceptor attributes, it is possible to compute or estimate the 
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corresponding probability of successful interception. The probability matrix P for successful interception 

can be defined as follows. 

11 1

1

... n

ij

m mm

p p

z

p p

 
 

=  
 
 

P                 (2) 

where Pij, denotes the probability that interceptor i successfully intercepts target j. 

Thus, based on Eq. (1) and Eq. (2), the probability P, that target j is successfully intercepted can be 

described as 

( )
1

1 1
ij

n
z

j ij

i

P p
=

= − −                   (3) 

Therefore, the SMTA problem can be transformed into the optimization problem of performance 

indicators under constraints. Based on Eqs. (1)- (3), the sum of the product of each target's threat level 

and interception success rate can be calculated and denoted as the multi-objective indicator E. 

1

1
n

ij

j

E z
=

= =                   (4) 

where E evaluates the quality of the generated allocation scheme, and the constraint condition is 

expressed as  

1

1
n

ij

j

z
=

=                   (5) 

Table 1 

Typical modeling methods for the SMTA problem. 

Studies Year Main characteristics 

Manne [32] 1958 The original formulation of the SMTA problems 

Soland [33] 1973 Introducing the game theory into the problem 

Kwon et al. [57]  1999 Converting the problem into an integer programming problem by establishing a linear 

objective function and non-linear constraints. 

Ahujo [58] 2007 Applying a logarithmic transformation to the objective 

Li et al. [59] 2009 Transforming the allocation problem into a binary program by limiting the number of 

interceptors of each type to one. 

Rosenberger et al. 

[60] 

2005 Transforming the allocation problem into a knapsack one by assuming that each 

target can only be assigned one interceptor. 

Karasakal [61] 2008 Considering all defended objectives to be equally important and aims to maximize 

the anticipated damage to incoming targets. 

Shalumov et al. [62] 2017 Applying the multi-agent theory into the problem 

Currently, based on the study conducted by Manne in 1958, various modeling methods have been 

discussed for SMTA problems considering different constraints or simplifications. These methods can be 
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summarized as shown in Table 1. 

2.2.2. DMTA 

The DMTA problem usually considers that the combat situation changes in real time during the 

engagement process, such as the number of incoming targets, movement status and other relevant 

parameters, and the interceptors can make real-time dynamic supplementary changes, etc. Therefore, 

the interception success probability of the interceptor against any target will also change in real time. 

In order to consider the interception suitability of DMTA problems, based on the study in Ref. [63], 

several fundamental concepts are introduced as follows. 

Definition l. Visual time window tv, this refers to the period in which the target is visually exposed 

(detected)to a potential interception from the defensive part, indicating the possibility of the target being 

intercepted within this time window. 

Definition 2. Engagement time window te. This refers to the minimum time required for the interceptor 

to lock and attack its target, which is determined by the combined response time of the defense system 

and the flying or guiding time of the interceptor. 

Definition 3. Interception time window ta. It refers to the period where the interceptor has the ability to 

achieve a successful interception against its target. 

Then, based on the above definitions, it can be derived that ta = tv - te. Furthermore, it is evident that 

in order to effectively intercept the target, it is necessary to ensure that tv>te, in the DMTA problem. 

Generally, according to the look-shoot-look strategy [29, 61], the target allocation process of the 

DMTA problem is presented in Fig. 6(b). This problem can be approached as a series of SMTA processes, 

with a frequency of ta time units, during which the interceptor updates the combat situation and computes 

an optimal allocation strategy until the interception task is completed. Because the DMTA model is more 

complex, the research on this problem is just in the initial stage. Specifically, based on the performance 

of the battlefield observation orientation-decision-action (OODA) chain, it is generally anticipated that td 

≥ ta. 

Remark 1. Research on the multi-stage MTA problem concentrates on the division of one's own 

weapons into multiple stages or waves in order to effectively engage incoming targets. The objective is to 

optimize the allocation of weapon resources during the multi-stage combat process, given specific 

conditions. This problem falls under a relatively unique category of MTA problems and is occasionally 

considered as part of the DMTA problems. 

Remark 2. As shown in Fig.7, the difficulty of the DMTA problems is influenced not only by dynamic 

changes in the time dimension but also by the impact of uncertainties on the allocation process. These 

uncertainties primarily come from the spatial, time, and information dimensions, which are coupled with 

time, resulting in a highly complex allocation calculation process. 
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Fig. 7. Coupled analysis of DMTA problems. 

2.3. Analysis 

Using Fig. 8 as a reference, assume that there are three "attackers" attacking the “operational target", 

with four "interceptors" defending against the "attackers" to protect the "operational target". This scenario 

illustrates the key features of the MTA problem. The current research on the MTA problem mainly focuses 

on problem modeling and algorithm design. Generally, the analysis process of his type of problem mainly 

includes the following four steps. 

(1) Model assumptions. There are various uncertainties or factors that cannot be accurately 

determined in actual battlefields. Therefore, it is necessary to make reasonable assumptions when 

constructing the model to highlight the main research content. 

(2) Establishing the objective function. There are two main types of objective functions for the MTA 

problem, based on offensive and defense parties, respectively [64]. In the first strategy, the task is to 

minimize the threat value of the attacker in the process of surprise defense; in the later one, the task is to 

maximize the operational effectiveness of the defender in the interception process. 

(3) Selection of constraints. In the process of solving the MTA problem, it is necessary to fully consider 

the weapon performance, interception strategy equipment and ammunition quantity, operational feasibility, 

and other constraints so that the final assignment result meets the actual operational requirements [65]. 

(4) Solution algorithm design. Given the constraints, the objective function is solved to obtain the 

optimal allocation scheme. The solution algorithm is required to have high speed, accuracy, and real-time 

capability. 
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Fig. 8. Schematic diagram of the MTA problem (The blue arrow in the figure indicates the defensive 

interception by the "interceptors" against the "attackers", while the red arrow indicates the attack by the 

"attackers" on the "operational target".) 

Among the four aforementioned steps, step 2 is of paramount importance. The core of this step lies 

in the modeling of target threat attributes (which holds true from both the offensive and defensive 

perspectives). Target threat attribute modeling primarily involves two components: threat element 

extraction and threat index modeling. Only through meticulous modeling and analysis of the target's threat 

attributes can the optimal allocation of targets be achieved. Using an air defense and anti-missile combat 

scenario as an example, a concise analysis of target threat attribute modeling is presented as follows. 

In actual combat scenarios, a wide range of information is typically gathered about the target, 

including its nature, type, speed, acceleration, path angle, fight height, fight time, and interference 

capability. This attribute information encom-passes both quantitative and qualitative descriptions. 

Consequently, due to the threat capabilities and attack intentions of aerial targets, threat element 

extraction primarily focuses on two attributes: capability and intention. Additionally, to integrate both 

subjective and objective factors in assessing threat attributes, the subjective judgment of decision-makers 

in air and missile defense is also considered as a threat element. And a detailed calculation example of 

objective function for the MTA problem is presented in Appendix A Section. 

As depicted in Fig. 9, among various threat attributes, target type, speed, and interference intensity 

are directly related to the target's threat capability; Route shortcut, flight height and flight time reveal the 

target's attack intentions; Subjective judgment reflects the preferences of decision-makers in air and 

missile defense. Building on the aforementioned threat attributes of aerial targets, a model can be 

developed to quantify the threat level associated with these attributes in the subsequent target allocation 

process. 

Remark 3. The SMTA problem can be regarded as a one-time allocation process with relatively low 

coupling between uncertainties and the allocation process. Thus, compared to the SMTA problem, DMTA 

requires dynamic identification of targets and determination of available weapons. Consequently, the 
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solving algorithms must have excellent real-time performance to make timely decisions on target 

allocation. 

 

Fig. 9. Target threat assessment model in missile defense operations. 

2.4. Algorithm 

Given the NP-complete nature of MTA problems, developing efficient solving algorithms has long 

been a research focus and challenge in this domain. Currently, these algorithms are broadly categorized 

as exact algorithms and approximate algorithms. Among approximate algorithms, the main categories 

include rule-based heuristic algorithms and machine learning algorithms. The main algorithm classification 

is illustrated in Fig. 10. 

2.4.1. Exact algorithm 

The exact algorithms commonly employed to solve MTA problems involve the enumeration method, 

branch-and-bound method, dynamic programming method and Hungarian method. 

 

Fig. 10. Classification of the algorithms for solving MTA problems. 
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(1) Enumeration method 

This method is based on the assumption that the number of possible allocation results is finite [66-

69]. It involves identifying all feasible solutions that meet the constraint function, calculating the 

corresponding performance indexes for each solution, and then selecting the allocation scheme that yields 

the best performance index. This approach is particularly suitable for solving MTA problems with a limited 

number of potential allocation results. In response to the challenge of selecting discrete levels of reliable 

subtractive area and point defenses to safeguard a group of targets against ballistic missiles, Soland [33] 

developed a scheme that integrates enumeration and branch-and-bound techniques. The objective is to 

minimize the overall damage inflicted on the targets by an optimal attack conducted by a specified quantity 

of reliable offensive missiles of a single kind. 

(2) Branch-and-bound method 

This method is commonly used for solving integer programming problems [70-73]. It involves 

repeatedly partitioning the entire feasible solution space into smaller and smaller subsets, known as 

branches. For each subset, an objective lower bound is calculated (for minimization problems), which is 

referred to as bounding. After each branching, subsets that have bounds exceeding the known objective 

value of feasible solutions are no longer further branched, eliminating many subsets from consideration. 

This is known as pruning. The remaining subsets are added to the feasible set, and a branching node is 

selected from the feasible set for expansion. This process continues until a feasible solution is found or 

the feasible set becomes empty. Rosenberger et al. [60] expanded upon the basic MTA problem by 

introducing the possibility of multiple target assignments per platform, and the problem was formulated as 

a linear integer programming problem. Based on this formulation, an algorithm was developed using the 

branch-and-bound framework. This algorithm enumerates feasible tours of assets/resources, which can 

be computationally intensive when dealing with a large number of sources and targets. Meanwhile, it 

ensures that an optimal solution is found. Simulation results demonstrated the practical applicability of 

these methods and their usefulness in tasks such as sensor tasking and resource allocation problems. 

Kline et al. [74] proposed a nonlinear branch-and-bound approach for solving the MTA problem using an 

untransformed non-linear model. Additionally, two heuristics were developed based on a branch and 

bound algorithm and the optimal solution to the quiz problem. Simulation results substantiated that the 

proposed algorithm exhibits excellent convergence performance, capable of solving large-scale problems 

in a fraction of the time, typically within ten thousandths. Additionally, by combining the branch-and-bound 

and column generation methods, some improved solutions referred to as branch-and-price schemes were 

investigated in Refs.  [75-78]. 

(3) Dynamic programming method 

The dynamic programming method is commonly employed to solve problems that exhibit certain 
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optimal characteristics [24, 79-82]. These types of problems often have numerous feasible solutions, each 

associated with a specific value. The objective is to identify the solution that offers the optimal value. The 

fundamental principle involves breaking down the problem at hand into smaller, solvable subproblems. By 

initially solving these subproblems and subsequently integrating their solutions, we can obtain the answer 

to the original problem. This approach also entails storing the solutions to previously addressed 

subproblems in a table for easy retrieval. In this way, unnecessary repetitive computations are avoided, 

leading to significant time savings. A tabular structure is frequently used to record the answers to all 

subproblems, regardless of their future utility. Based on the study conducted by Ahuja et al. [58], Lu et al. 

[83] developed an integer linear programming (ILP) model to linearly represent the exact solution for the 

MTA problem. Additionally, to reduce the number of possible columns in the ILP, they employed branch-

and-price method. The average execution time of our exact algorithm for solving the instances mentioned 

in Ref. [58] was 4.68 seconds. Especially, the algorithm took less than 108 seconds for the most 

challenging case, and only 0.40 seconds for the case involving 80 weapons and 80 targets. 

Bertsekas [24] transformed the MTA problem into a dynamic programming (or Markovian) decision 

problem. To address the computational intractability caused by the large number of states and complex 

modeling issues, a neuro-dynamic programming framework was utilized. In this framework, neural 

network architectures were trained on simulated data to approximate the cost function. This approach 

effectively avoids the computational challenges associated with exact methods. Ahner et al. [84] 

investigated a two-stage MTA problem, where the first stage tasks are known and the arrivals of second 

stage tasks follow a random distribution. To determine optimal allocation strategies, a combination of 

simulation and mathematical programming was employed within a dynamic programming framework. The 

unique structure of the allocation problem was utilized to recursively update functional approximations 

that represent future rewards using subgradient information. 

(4) Hungary method 

The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem 

in polynomial time [85-88]. It is widely used in the field of operations research. Zhang et al. [89] conducted 

a comparative analysis of the time consumption and stability between the traditional Hungarian algorithm 

and intelligent optimization algorithms. Their findings demonstrate that the establishment of an adaptable 

Hungarian algorithm for all types of MTA problems, achieved through the proposal of a unified efficiency 

matrix. To address the issues of low efficiency in network air defense operations and the difficulty in 

evaluating target assignment schemes, Zhang et al. [90] proposed a model for the efficiency function of 

network cooperative fire control using an improved Hungarian algorithm. This improved algorithm enables 

the one-time allocation of weapon targets without the need for repeated transformation of the cost matrix. 

Inspired by the Hungarian algorithm, Du et al. [91] proposed a novel approach that incorporates special 
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weighting factors to determine the optimal allocation process based on the applicant's cost and benefit. 

This scheme is applicable for both square and non-square cost matrices, and exhibits a similar time 

consumption as the traditional Hungarian algorithm. 

Overall, the exact algorithm is highly effective in resolving small-scale MTA problems. However, as 

the problem scale increases, the number of variables and constraints also increase, leading to a 

considerable increase in the time complexity of this approach. This will result in the occurrence of 

"combinatorial explosion" phenomenon. Considering the large number of parameters involved in practical 

battlefield scenarios, the exact algorithm requires a significant amount of time for calculations, making it 

unsuitable for solving large-scale MTA problems. 

2.4.2. Heuristic algorithm 

The heuristic algorithms are commonly adopted to solve MTA problems includes single-point and 

multi-point iterative methods. 

(l) Single-point iterative method 

The single-point iterative method generates another solution based on a single solution in each 

iteration, which can be seen as searching and jumping point by point in the solution space to gradually 

improve the current solution. Luo et al. [92] introduced an improved simulated annealing algorithm for the 

optimization of command, control, communication, and information in air defense systems. Their approach 

utilized iterative length to determine the annealing temperatures and employed an optimal solution reserve. 

The simulation results demonstrated that this algorithm exhibited robust capabilities in locating optimal 

solutions and achieved rapid convergence. Since the simulated annealing algorithm is easy to fall into the 

local optimal solution, Fu and Wang [93] introduced the greedy algorithm into it to propose a greedy 

simulated annealing algorithm. This facilitates a local greedy search after each iteration to explore 

additional solutions and enhance the overall quality of the solution. As a result, this modification enhances 

the effectiveness of the allocation process. Xin et al. [65] proposed a comprehensive asset-based model 

for solving the DMTA problem, which incorporates capability constraints, strategy constraints, and 

resource constraints. The model utilizes virtual permutation and tabu search methods to achieve optimal 

decision-making in real-time DMTA scenarios. This approach demonstrates competence in delivering 

high-quality decision makings. 

Chang et al. [94] studied the multi-stage MTA problem with an emphasis on the attacking flexibility 

for targets in different stages. They developed a binary nonlinear integer programming model and 

introduced an improved adaptive large-scale neighborhood search (ALNS) algorithm. The simulation 

results showed that, in most cases, the ALNS algorithm outperformed both exact methods and 

metaheuristics in terms of achieving higher-quality solutions in a shorter time period. Ahuja et al. [58] 

proposed an exact algorithm to solve the general MTA problem. Their approach employs a set of lower 
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bounding schemes that provide a lower bound for the problem, as well as a very large-scale neighborhood 

searching algorithm that yields an approximate solution. This method is capable of obtaining the exact 

solution for medium-sized instances (e.g., 80 weapons and 80 targets); however, it requires a long 

execution time (16.2 hours) [95]. 

(2) Swarm intelligence method 

Since the early 1960s, numerous researchers from various fields have shown great interest in many 

swarm optimization algorithms, which have gained widespread attention and possess unique advantages 

in optimization problems. Li et al. [59] proposed a genetic algorithm (GA) to address the MTA problem 

with spatial constraints. In their approach, a chromosome was encoded as a binary matrix with "forbidden 

bits" representing the constraints. Additionally, they introduced a novel operator called "circle-swap" to 

serve as a functional mutation operator for the matrix-type chromosome with forbidden bits. This can 

ensure the validity of the chromosome as a solution throughout the allocation process. Regarding the 

problem of DMTA, Kong et al. [96] devised an improved multi objective particle swarm optimization (MPSO) 

algorithm. They incorporated various learning strategies for the dominated and non-dominated solutions 

of the algorithm to facilitate targeted learning and evolution. Additionally, to overcome the issue that the 

algorithm easily falls into local optimum, they included a search strategy based on simulated binary 

crossover (SBX) and polynomial mutation (PM). This strategy allowed for the exchange of elitist 

information between the external archive and enhanced exploratory efficiency. On this basis, an adaptive 

simulated annealing-particle swarm optimization strategy was proposed by Liu et al. [37] for the air-ground 

MTA problem. They incorporated adaptive improvements into the traditional PSO algorithm and combined 

it with the simulated annealing algorithm. This integration aims to enhance the convergence speed and 

overcome the drawback of the PSO algorithm easily getting trapped in local extreme points. The strategy 

exhibited excellent performance in terms of convergence speed and global optimization capabilities. 

In recent years, with the development of various bio-inspired optimization algorithms [97-103], they 

have also been applied to the MTA problem. Zhang et al. [27] introduced the whale optimization algorithm 

(WOA)as a solution to the MTA problem. The objective was to optimize combat effectiveness by fairly 

allocating weapon unit resources from weapon systems to threat targets, while determining the optimal 

decision matrix. Rezende et al. [104] combined the ant colony optimization with the greedy strategy to 

solve the MTA problem considering large scale air combat scenarios. Simulations results demonstrated 

that the proposed algorithm can obtain high-quality results and have a fast convergence performance. To 

address the slow convergence rate and low search efficiency in solving the DMTA problem, Chang et al. 

[29] proposed an improved artificial bee colony (ABC) algorithm. This algorithm incorporated a novel 

initialization method that utilizes rule-based heuristic factors. In addition, they introduced a ranking 

selection and elite guidance mechanism to improve the search efficiency of the ABC algorithm. Especially, 
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the heuristic factor initialization method was combined with the improved ABC algorithm for the DMTA 

problem, which utilizes integer encoding based on the characteristics of DMTA. 

In general, heuristic algorithms have are relatively simple algorithm framework and are capable of 

solving large-scale MTA problems. They also require shorter computation time. However, most of these 

algorithms are based on specific rules, resulting in lower adaptability, robustness, and stability 2.4.3. 

Machine learning algorithm 

In 2000, Bertsekas et al. [24] firstly adopted Neural Dynamic Programming (NDP) strategy to solve 

the missile defense problem. NDP is a type of reinforcement learning method that handles the curse of 

dimensionality by using approximate cost-reward functions based on neural networks. It does not require 

an explicit system model but uses a simulator as a substitute model to train neural network structures and 

obtain suboptimal strategies. In recent years, with the rapid development of artificial intelligence 

technology, machine learning algorithms have gained widespread attention in the field of MTA research 

[25, 105, 106, 107, 108, 109]. Li et al. [25] proposed an intelligent model for the SMTA problem using deep 

reinforcement learning method. This approach addressed the challenges faced by traditional algorithms 

in terms of modeling difficulties and low search efficiency. Additionally, they constructed a Markov Decision 

Process (MDP) for MTA tasks based on this planning and solving model. The experimental results 

demonstrated that this proposed model effectively generated satisfactory solutions in both small-scale 

and large-scale scenarios. In order to address the issues commonly encountered when applying existing 

task assignment methods to ground-to-air confrontation, such as low efficiency in handling complex tasks 

and interactive conflicts in multiagent systems, Liu et al. [105] proposed a multiagent architecture known 

as the one-general agent with multiple narrow agents (OGMN). Additionally, considering the sluggish 

performance of traditional dynamic task assignment algorithms, they developed the proximal policy 

optimization for assignment process of general and narrow agents (PPO-TAGNA) algorithm. This 

algorithm can enhance the assignment process for both general and narrow agents. 

For the MTA problems considering dynamic environment and multiple constraints, machine learning 

algorithms still demonstrate enormous potential for applications [107, 28, 34, 110]. Unbalanced scheduling 

of unmanned ground combat vehicles and inadequate target strikes are prevalent in complex urban 

battlefields. Wang et al. [28] introduced a novel architecture for multi-weapon target assignment and 

developed a multi-objective artificial bee colony (MOABC) algorithm with an elite strategy. Additionally, to 

address the impact of the mutation operator on multi-objective assignment, they proposed an improved 

deep Q- learning network with a self-adaptive variation operator and integrated the state representation 

of the nectar source with the overall allocation scheme. Shokoohi et al. [107] proposed a reinforcement 

learning-based solver for the problem of dynamic distributed constraints in the DMTA problem. Their 

approach demonstrated that reinforcement learning techniques can provide an alternative solution 
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method over time, with computational efficiency surpassing that of sequential distributed constraint 

optimization problem solvers. Karasakal et al. [34] introduced a new solution for the DMTA problem in a 

naval task group. They focused on rescheduling surface-to-air missiles (SAMs) that were already 

scheduled to intercept anti-ship missiles (ASMs). They utilized a bi-objective model to maintain high 

efficiency while handling dynamic disruptions, considering both the efficiency of SAM systems and the 

schedule stability. In addition, they proposed a novel approach to assist decision-makers in selecting a 

Pareto optimal solution that addresses the time-sensitivity of rescheduling decisions and the enormous 

amount of information to be processed. Liu et al. [110] introduced a "time sampling DWTA model" This 

model segmented the decision-making process by establishing specific time intervals for data collection. 

By doing so, it effectively captures real-time fluctuations in the target threat level, enabling prompt 

decision-making. To enhance the efficiency of calculations, the Proximal Policy Optimization (PPO) 

method was employed to address this model. Li et al. [111] developed an improved Deep Deterministic 

Policy Gradient (DDPG) algorithm to address the traditional DWTA problem. This algorithm incorporates 

a double noise mechanism to broaden the action search range and introduces a prioritized experience 

replay mechanism. Compared to other reinforcement learning algorithms, the agent trained with the 

improved DDPG demonstrates a higher win rate and greater rewards during confrontations. Consequently, 

it exhibits superior allocation results. 

In general, machine learning algorithms have the ability to continuously learn and evolve, and well-

trained models have good allocation performance. However, these algorithms require significant 

computational resources, which can easily lead to the "curse of dimensionality", Additionally, they have 

poor interpretability and still have ample room for further research. 

Overall, the representative studies on different solving algorithms for MTA problems are summarized 

in Table 2, along with their advantages and disadvantages. From an algorithmic perspective, enhancing 

the effectiveness of solving the MTA problem continues to be an area of notable research significance 

and promise in both the present and future periods. 

Table 2 

Summary of the algorithms for solving MTA problems 

Attribute Classification Studies Advantages Disadvantages 

Exact Enumeration  [33] The given 

problem can be 

solved to obtain 

an exact optimal 

solution, which is 

easy to 

Difficulty in 

solving large-

scale problems; 

Accurate 

mathematical 

models are. 

Branch-and-

bound 

[60] 

Branch-and-price [75-78]  

Dynamic 

programming 

[83,24,84] 
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Hungary [83,24,84] comprehend and 

implement 

Generally 

required 

Hounristic: single 

point 

Simulated 

annealing 

[92,93] The algorithm 

framework can be 

easily 

implemented and 

allow for 

extensive 

exploration of the 

solution space. 

The algorithm 

effectively 

leverages 

domain-specific 

knowledge to 

achieve fast 

solving time and 

high efficiency. 

 

The algorithm 

exhibits long 

computational 

time and lacks 

robustness. 

Tabu search [65] 

Neighborhood 

search 

[58,94] 

Heuristic: swarm 

intelligence 

Genetic algorithm [59] The allocation 

results highly 

depend on the 

rules, and it is 

generally prone to 

getting 

trapped in local 

optima. 

Ant colony 

algorithm 

[104] 

PSO algorithm [37] 

Whale 

optimization 

[27] 

Machine learning Artificial neural 

network 

[34] The algorithm can 

continuously 

learn and evolve, 

showing a high 

execution 

efficiency.  

The algorithm 

requires high-

quality training 

data and powerful 

computing 

capabilities 

and has poor 

interpretability. 

Reinforcement 

learning 

[28, 105, 106, 

110, 111] 

 

3. Future prospects 

Indeed, the MTA problem belongs to the fundamental and challenging issues in the fields of command 

control and mission planning. Over the past 80 years of development, the MTA problem has gone through 

several stages and the related research has gradually become diverse and deepened. As shown in Fig. 

11, this paper proposes a development framework based on the "HIGH" model3 (high-speed, integrated, 

                                                   
3 The name “High" is derived from the initial letters of the four short sentences: high-speed, 

integrated, great, harmonious. 
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great, harmonious), focusing on the application scenarios, modeling mechanisms, solution algorithms, 

and system efficiency of the MTA problem, and provides prospects for its future development direction. 

 

Fig. 11. Description of the development framework for the MTA problem based on the "HIGH" model (high-

speed, integrated, great, harmonious). 

3.1. High-speed confrontation demand 

The MTA problem has expanded from typical defense operations such as ground defense, naval 

defense, and aerial interception to various operational domains including air, space, land, sea, and 

electromagnetic warfare. In recent years, with the continuous development of high-speed-related 

technologies, military powers worldwide are actively developing new conventional strategic strike 

capabilities represented by high-speed vehicles [112-116]. These efforts aim to advance the process of 

high-speed vehicles from technological breakthroughs, demonstration, and validation to weaponization 

across various platforms such as sea, land, air, and space. The emergence of high-speed vehicles 

completely breaks down the traditional boundaries between air and space defense, pushing warfare into 

a high-speed and high-confrontation era [117, 118, 119]. As shown in Fig. 12, high-speed vehicles have 

been used many times in actual combat in the "Russia-Ukraine conflict". 

 

Fig. 12. Hypersonic vehicles have been used in the "Russia-Ukraine conflict" (On March 18. 2022, the 

Russian military employed the "Dagger" high-speed missile to attack a significant underground missile 

and aviation ammunition depot of the Ukrainian armed forces in Ivano Frankivsk Oblast, located in the 

western region of Ukraine. This marked the inaugural deployment of high-speed weapons in actual 
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combat, historically unprecedented [120, 121]). 

The MTA problem related to such targets involves elements in the domains of air, space, land, sea, 

and electromagnetic warfare. As relevant technologies mature, high-speed vehicles will undoubtedly 

trigger the evolution and innovation of operational styles, tactics, and strategies, profoundly impacting the 

battlefield environment. Currently, countries around the world lack effective defense capabilities against 

high-speed vehicles, and basic research in this field is still in its early stages. Therefore, expediting cross-

domain target allocation problem research focused on scenarios involving high-speed vehicles in 

offensive and defensive confrontations is crucial in promoting the intelligent development of future weapon 

systems. 

3.2. Integrate modeling ability 

The integration of information systems has become a fundamental form of warfare in future warfare, 

leading to conflicts and contradictions in various dimensions such as time, space, frequency, tasks, and 

effects between both offensive and defensive parties. Furthermore, with the development and evolution 

of concepts such as mosaic warfare, cross-domain operations, and collaborative operations, combat units 

in future warfare will be interwoven and interconnected across air, land, sea, and electromagnetic domains. 

These combat units exhibit diverse physical attributes, and it is of paramount importance to fully leverage 

and take into account their unique features in MTA problems. This highlights the importance of efficiently 

utilizing these combat units. In recent years, modeling methods in the field of MTA have expanded from 

mathematical programming techniques such as integer and mixed integer programming to include game 

theory, dynamic programming, multi-agent systems, network flow, and other methods. Notably, it is 

essential to establish integrated MTA models that consider the coupling and coordination between 

different units, taking into account external uncertainties, while expanding the application capabilities of 

the DMTA problems. This forms the foundation for addressing MTA challenges in future warfare. 

3.3. Great solution for performance 

Due to the NP-hard nature of MTA, solving algorithms has always been a focus of research in this 

field. Scholars have attempted various exact algorithms and intelligent optimization algorithms to solve 

the MTA problem. With the iterative updates of warfare modes, future MTA problem-solving algorithms 

face demands such as large-scale systems, systematic applications, high real-time computing, and limited 

computing resources. Traditional exact algorithms cannot meet these requirements. With the development 

and updates of artificial intelligence, machine learning, and other related theories, it is feasible to enhance 

the ability to solve MTA problems by researching offline deep training learning and online rapid application 

solution algorithms. At the same time, improving the rules of attack and defense between different combat 

units and accelerating the improvement of computer hardware resources can effectively promote the 

efficient application of future solution algorithms and assist in generating more suitable MTA solutions. 
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It is worth noted that the recent rise and rapid development of Large Language Models (LLMs) have 

significantly invigorated the approach to MTA problems. LLMs offer several advantages over traditional 

learning methods, including reduced cost, enhanced learning efficiency, and greater convenience and 

flexibility [122-125]. Their extensive knowledge base, strong generalization capabilities, and proficient 

logical reasoning and information integration skills position them as valuable assets for advancing the field 

of MTA in the future. 

3.4. Harmonious command and control principles 

In fact, the MTA problem permeates every aspect of warfare and is highly B: intertwined with the 

OODA combat chain. However, existing research has paid little attention to the integration of the MTA 

problem with fields such as command and control, reconnaissance-strike fusion, and effectiveness 

evaluation, 2 thus lacking potential practical applications in future warfare. It is crucial to achieve efficient 

strike/defense of targets through reasonable target allocation. Therefore, establishing a harmonious and 

integrated command and control principle, bridging the MTA problem with the OODA combat chain, can 

not only enhance combat effectiveness but also provide more favorable decision-action instructions for 

commanding officers, ensuring that the offense-defense confrontation leans towards the advantageous 

side. 

 

4. Conclusions 

This paper provides a systematic review and synthesis of the MTA problem, focusing on four aspects: 

basic development, problem classification, modeling methods, and solution algorithms. Additionally, 

bibliometric analysis of this research field is conducted using the CiteSpace software. Based on these 

findings and considering the new challenges brought by intelligent and collaborative warfare, we analyze 

the development trends of the MTA problem and propose a development framework based on the "HIGH" 

model, providing reference for future research. 
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Appendix A. An example calculation of the objective function for the MTA problem 

This section provides a detailed calculation example of objective function for the MTA problem based 

on Fig. 9, specifically focusing on target capability and target intention [37, 126, 127]. 

Appendix A.1.Target capability 

Target capability encompasses three primary components: target type, speed, and interference 

intensity. 

(1) Target type 

Based on expert assessments and specialized knowledge, aerial threats can be categorized 

according to their level of threat. Researchers generally classify aerial targets into four main categories: 

the first category includes tactical ballistic missiles, air-to-ground missiles, and anti-radiation missiles, 

denoted as s1; the second category consists of large bombers, denoted as s2; the third category comprises 

fighter-bombers, denoted as s3; and the fourth category includes helicopters, denoted as S4- Additionally, 

decoys and false targets are classified as the fifth category, denoted as s5. Consequently, the model for 

target type is structured as follows. 
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                   (A1) 

where x denotes the target type, and a corresponding threat level is determined based on the incoming 

target's type. 

(2) Flight speed 

Flight speed serves as an indicator of how easily the defending party can capture a target. A higher 

speed target can evade missile strikes more readily and reach the attacked location more quickly, thus 

decreasing the missile's attack possibility. Conversely, slower targets find it more challenging to escape 

missile action, requiring less firepower to achieve successful defense and thus representing a lower threat 

level. Assuming the target's flight speed VT ranges from 0 to 500 m/s, the model for flight speed is 

formulated as follows. 
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                    (A2) 

(3) Interference intensity 

Due to electronic interference by the target during the confrontation, the missile will be subject to 

interference during interception. A common way to model interference intensity is as follows. 

r

1,     Very strong

0.8,  Strong

0.5,  Moderate

0.2,  Weak

0,    No

T





= 


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                   (A3) 

Appendix A.2.Target intention 

Target's attack intentions usually consist of three primary components: route shortcut, fight height and 

flight time. 

(1) Route shortcut 

Shortcut route parameter is essential for evaluating the threat level posed by an incoming target to 

the defender. It quantifies the proximity of the incoming target to the attacked target. This parameter 

typically measures the distance from the attacked target to the Closest Point of Approach (CPA). The CPA 

represents the point along the target's trajectory that is nearest to the attacked target. The distance rcpa 

between the attacked target and the CPA directly reflects the threat level. A greater distance indicates a 

lower threat, while a smaller distance signifies a higher threat. A common method for modeling route 

shortcut is outlined as follows. 
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              (A4) 

(2) Flight height 

Flight height parameter measures the altitude at which a defense system must engage an incoming 

target. A higher altitude indicates that the missile must fly higher, reducing the threat posed by the target 

and increasing the likelihood of successful interception. Conversely, a lower altitude suggests that the 

target is closer to the defense system, thereby increasing the threat level. Consequently, the model for 

flight height h is structured as follows. 
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                 (A5) 

(3) Flight time 

Flight time serves as a key parameter for assessing the threat level of a target. A shorter flight time 

indicates that the incoming target can reach the attacked target quickly, thereby posing a greater threat. 

Conversely, a longer fight time suggests that the target is unlikely to pose an immediate threat to the 

attacked target. The following outlines a common method for modeling fight time tarrive. 
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Remark 4. Subjective judgment assesses a decision maker's ability and intention to evaluate the 

current threat. Specific threat values should be determined based on the actual situation, thus omitting 

the need for a specific mathematical model. 

Remark 5. Utilizing the established target threat assessment mode land the specific guidance laws 

of the missile, along with Eq. (4), we can formulate a general objective function F designed to minimize 

the survival probability of enemy targets. 
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