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Abstract: High-speed submerged marine vehicles, such as torpedoes, traveling at velocities of an order
of 100 m/s and above, require powerful propulsion to overcome the tremendous hydrodynamic drag.
This paper aims to investigate a marine hybrid-propellant water-breathing ram rocket (marine ramjet
or ducted rocket) under various underwater cruise conditions. At high underwater cruise speeds, the
ram rocket outperforms regular rocket motors, substantially increasing its specific impulse and thrust.
This investigation utilized a unique test facility capable of dynamically testing the marine ramjet.
Over 20 dynamic experiments have been conducted, revealing the submerged motor characteristics
at different cruise speeds, water-to-propellant mass ratios, and oxidizer-to-fuel mass ratios, thereby
creating a performance map of the marine ramjet. The results were compared with static firing data
and theoretical calculations, showing a good agreement with standard specific impulse improvement
of about 55% compared to a regular hybrid rocket, reaching a maximum value of 380 s. The significant
increase in performance demonstrates the potential of the water-breathing ramjet for propelling
high-speed underwater vehicles.

Keywords: underwater propulsion; water-breathing ramjet; marine ramjet; water-breathing ducted
rocket; ram rocket; hybrid rocket; dynamic testing

1. Introduction

Driving underwater vehicles at high velocities (e.g., torpedoes exceeding 100 m/s)
demands a robust propulsion system capable of overcoming substantial hydrodynamic
drag. Conventional propeller-based propulsion systems are efficient under relatively
low velocities (up to about 25 m/s); as the cruise speeds increase, cavitation formation
significantly reduces propeller efficiency, making it unsuitable for the mission. Solid
propellant rocket propulsion has been considered an alternative for underwater vehicle
propulsion since the 19th century [1], and recent studies exploring underwater hybrid
rockets have been conducted [2]. Regardless of the medium (air or water), rockets offer high
thrust-to-drag ratios and a relatively simple design, which is advantageous in terms of cost,
weight, and maintenance. However, their energetic performance (specific impulse, Isp) and,
hence, operating time and range are relatively low. To improve the energetic performance
of the rocket motor, a propulsion system that efficiently utilizes the surrounding water
emerges as a promising solution. Ambient water can function as an inert fluid to augment
the mass flow rate ejected by the propulsion system, act as an oxidizer to react with
hydro-reactive fuel components, or serve both roles. Like its aeronautical ducted rocket
counterpart, the water-breathing ram rocket operates by utilizing its high dynamic (ram)
pressure, resulting in an underwater high cruise velocity to ingest water into the combustion
chamber without the use of any moving parts. The water is directed through an internal
channel, reaching a mixing chamber, where the high-temperature combustion products
cause it to boil, generating steam. This steam, along with the combustion products, is
then accelerated through a nozzle, resulting in an exhaust jet that provides the necessary
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thrust for the vehicle propulsion. Gany [3] indicated that the marine water-breathing
ducted rocket not only increases the energetic performance (higher specific impulse and
lower specific fuel consumption) but it also increases the thrust/drag ratio compared to
common rockets.

Water-breathing ramjets (ram rockets) have been studied in the past both theoretically
and experimentally. Most of the theoretical works have explored the optimal performance of
the motor, with a focus on using solid propellants with metal additives such as magnesium
and aluminum [4–8]. In addition to theoretical investigations, experimental research on
the combustion of various fuels with water has been conducted [9–14]. Only a limited
number of studies have attempted experimental testing of a water-breathing ramjet, all
of which only included several static firings of metal-rich solid propellants [15–18]. Eisen
and Gany [19] pioneered the concept of using a marine water-breathing hybrid ram rocket
motor. Generally, hybrid motor energetic performance (specific impulse) is better than that
of solid propellant motors. Theoretical investigations revealed that this is also the case in
marine ramjets for non-hydro-reactive fuels. In addition to theoretical calculations, Eisen
and Gany [19] conducted numerous static firing tests under different oxidizer-to-fuel (O/F)
and water-to-propellant (W/P) ratios. When compared to a common hybrid rocket, the
specific impulse increased up to 70% with non-hydro-reactive fuels and nearly doubled
when hydro-reactive metal additives such as aluminum and magnesium were incorporated
in the fuel.

While static firing is commonly used for propulsion unit testing, it may not provide a
complete picture regarding the actual operation. The cruise speed, which determines the
stagnation pressure, plays a critical role in introducing the water into the motor and defining
the actual operating conditions, such as the incoming water flow rate and combustion
chamber pressure. Existing literature reports rely on experiments where water is forced
into the motor from a pressurized water tank during static firing tests. Testing a marine
water-breathing ramjet under actual cruise conditions would demonstrate the motor’s
ability to operate and its performance without the need for forcing water into the motor
artificially. Eisen and Gany [20] developed a test facility employing a water-breathing
hybrid motor for underwater operations and reported on a single dynamic test. The present
work aims at a parametric study of the performance of a submerged hybrid ram rocket
under cruise conditions covering broad ranges of operating parameters of speed, water-
to-propellant (W/P) ratio, and oxidizer-to-fuel (O/F) ratio. The test results are compared
with static firing data found in ref. [19] and theoretical calculations obtained using the CEA
thermochemical code [21].

2. Methods
2.1. Theoretical Evaluation

To assess the energetic performance of propulsion systems, a commonly employed
metric is the specific impulse (Isp), defined as the ratio of thrust generated (F) per mass
flow rate of propellant (carried onboard) that is consumed to produce that thrust (

.
mP

)
(see

Equation (1)); g0 is the standard gravitational acceleration. The higher the specific impulse,
the better the energetic performance of the propulsion system.

Isp =
F

.
mpg0

(1)

The thrust equation for adapted nozzle is as follows:

F =
.

meue −
.

mwu (2)

where
.

me is the exit jet flow rate, ue is the exit jet velocity,
.

mw is the incoming water flow
rate, and u is the vehicle velocity. The thrust coefficient

(
C0

F
)

was used to determine the
adapted nozzle’s performance. The characteristic velocity (C*) represents the combustor’s
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energy and can express the exit jet velocity, ue = C*C0
F. Substituting the water-to-propellant

mass flow rate ratio (W/P), one can obtain the following:

Isp =

[
1 +

(
W
P

)]
C*C0

F −
(

W
P

)
u

g0
(3)

C0
F is expressed as follows:

C0
F = Γ

√√√√√ 2γ

γ − 1

1 −
(

Pa

Pc

) γ−1
γ

 (4)

where γ represents the ratio of specific heats and Γ is defined as follows:

Γ =
√

γ

(
2

γ + 1

) γ+1
2(γ−1)

(5)

The water-to-propellant mass flow rate ratio (W/P) is defined as follows:

W
P

=

.
mw
.

mp
=

.
mw

.
m f uel +

.
mox

(6)

where
.

m f uel and
.

mox represent the fuel and oxidizer mass flow rates, respectively.
The characteristic velocity and specific heat ratio, which are necessary for these cal-

culations, were obtained using the CEA thermochemical code [21]. Calculations were
made for standard conditions of chemical equilibrium within the combustion chamber and
isentropic expansion from 1000 psia (6.9 MPa) to 1 atm (ambient pressure) in the nozzle
exit. The standard chamber pressure mentioned corresponds to the stagnation pressure
achieved at an underwater cruise velocity of approximately 115 m/s. For these calculations,
an initial temperature of 25 ◦C for the different ingredients was assumed. In line with
the actual test conditions, gaseous oxygen and polyester were used as the oxidizer and
fuel, respectively. The chemical formula of the polyester utilized was determined through
the chemical analysis reported in ref. [19] as C42H41O10 and its enthalpy of formation,
−886 kJ/mol. It is worth noting that the addition of large quantities of water may some-
times result in the product’s temperature decreasing below the boiling temperature of
water (i.e., 557 K at 1000 psia (6.9 MPa)), potentially leading to an inaccurate computation
by CEA. Therefore, theoretical results within a 10 K temperature range from the boiling
temperature of the water have been excluded. Figure 1 illustrates the boiling temperature
of water as a function of pressure.
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2.2. Experimental Evaluation
2.2.1. Water Basin

The 10 m diameter water basin used for testing the water-breathing ramjet in actual
cruise conditions is the one that was used and described in detail in ref. [20] (as illustrated
in Figure 2). The test motor was submerged at an underwater depth of about 30 cm,
permitting the assumption of atmospheric ambient pressure. It was attached to an arm
rotating at a controllable speed by a central 31 kW electric motor, enabling underwater
cruise velocities as high as 25 m/s.
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Figure 2. An illustration of the pool facility and the arm operated by the central electric motor for
rotational motion control [20].

2.2.2. Marine Ramjet (Ram Rocket)

The water-breathing ramjet used in this study employed polyester as its fuel and
gaseous oxygen as its oxidizer. Fuel grains were formed by casting a liquid mixture of
polyester resin with 1% (of the polyester mass) of hardener (methyl ethyl ketone peroxide)
into an acrylonitrile butadiene styrene (ABS) 3D-printed casting mold. After the polyester
fully solidified, the ABS mold was dissolved in acetone. This process is illustrated in
Figure 3. Oxygen was stored in a cylinder mounted on the rotating arm base and was
supplied to the motor through a tube running along the boom into the motor. The solid
fuel grain served as both the motor casing and the chamber. Additionally, a 3D-printed
ABS casing (which did not provide any strength advantages compared to polyester) was
incorporated to enable the attachment of screw rods, connecting the motor components
while preserving the hydrodynamic shape of the motor. A front-end inlet facilitated the
flow of incoming water via an attached 3.95 mm inner diameter stainless steel tube with
a thin protective zirconia layer. Controlled flow of oxygen was distributed around the
water tube into the fuel grain central port. At the fuel grain’s rear end, where the water
tube ended, a stainless steel aft-mixing chamber was located. It allowed evaporation and
good mixing of the incoming water with the hot combustion products before expelling
through the choked converging exit copper nozzle, whose throat diameter was varied from
6.85 to 8.0 mm. Figure 4 presents a picture of the motor and a section view sketch with the
main dimensions.
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Figure 4. A photograph (upper panel) and section view sketch of the tested water-breathing hybrid
ramjet (lower panel). The dimensions are in mm.

For the ignition of the motor, a small cavity in the front section of the fuel provided
space for a small mass of solid propellant. The solid propellant was ignited by a hot
wire connected to two electrical wires exiting the motor through the oxygen inlet to a
small battery situated on the rotating boom. To prevent water from entering the motor
before ignition, the nozzle and inlet were sealed with a 3D-printed ABS cork and nylon
sealing, respectively.

The experiment sequence began with the opening of the oxygen line, resulting in
the ejection of the nozzle cork. This was followed by the closure of the hot wire circuit,
allowing it to warm up and ignite the solid propellant. The hot gases from the propellant,
combined with the oxygen flow, initiated the fuel’s ignition and flame spread. As a result,
the nylon sealing for the water inlet was burned, allowing water to flow into the motor. A
second later, the rotational arm accelerated the submerged motor to its designated velocity,
ranging from 19 to 25 m/s. The experiment lasted for 8 s, concluding with the shutdown of
the oxygen line.

Monitoring of the chamber pressure and the oxygen flow rate (measuring the upstream
pressure of a 1.8 mm choked orifice) was carried out continuously (maximum error: ±2%).
The total fuel mass consumed during the motor’s operation was determined by weighing
the fuel grain before and after the experiment.

The actual values of the oxygen, fuel, and water flow rates, as well as the cruise speed
and nozzle throat, affected the combustion pressure during each experiment. To enable
comparison, a common basis was used by adjusting the actual measured specific impulse
to equivalent values at standard conditions (i.e., chamber pressure of 1000 psia; 6.9 MPa)
with the same efficiency. The adjustment was performed by multiplying the measured
specific impulse by the ratio between the theoretical values of the thrust coefficient under
standard conditions (Equation (4)) and the theoretical value under the actual conditions.
In addition, to account for the momentum of the incoming water

.
mwu, vehicle velocity

providing stagnation pressure equivalent to the standard pressure value, i.e., approximately
115 m/s, was used. The theoretical thrust coefficient for the actual choked convergent
nozzle was calculated as follows:

CF = (γ + 1)
(

2
γ + 1

) γ
γ−1

− Pa

Pc
(7)

Thermochemical calculations of γ were performed according to the conditions at each test.
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The experimental characteristic velocity was derived from the test measurements
using the following equation:

C∗
exp =

Pc At
.

mp +
.

mw
(8)

The calculation of the incoming water flow rate was based on the measured pressure
and theoretical calculation from CEA. Assuming a combustion efficiency ( ηc) of 80%, which
falls within the range of efficiencies observed in ref. [19] during static firings with identical
propellant compositions, a value of the W/P ratio could be guessed; then, using CEA and
the test results, the characteristic velocity was calculated in two different ways. The W/P
value that minimized the difference between the measured and calculated characteristic
velocity values was the chosen W/P ratio. A schematic flowchart outlining this calculation
procedure is presented in Figure 5.
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3. Results and Discussion
3.1. Theoretical Prediction

A theoretical presentation of the standard specific impulse and the chamber tempera-
ture for different O/F and W/P mass ratios is given in Figure 6. At the optimal conditions,
i.e., O/F = 2.15 and W/P = 2, the increase in the overall exhaust jet flow rate due to the
addition of water resulted in a noticeable enhancement in specific impulses compared
to a rocket motor operation without water addition, yielding a peak specific impulse of
456 s. The inclusion of water decreases the chamber temperature; an excessive addition of
water leads to a decrease in the exhaust velocity and motor performance. This reduction in
chamber temperature limits the amount of water that can enter the motor based on the hot
gas’s ability to evaporate it. Consequently, for high values of W/P ratios, the feasible range
of O/F ratios narrows, as can be seen in Figure 6 for W/P ratios greater than two.

3.2. Experimental Results
3.2.1. Single Typical Experiment

Figure 7a–c displays the results of a typical experiment obtained during dynamic
firing under underwater cruise conditions. Figure 7a presents the oxygen mass flow rate,
starting before the ignition of the motor and showing a practically constant value of 5.5 g/s
throughout the operation. Figure 7b displays the vehicle velocity, dictated by the central
electric motor control, starting with a short period of zero motion, then increasing gradually
to the desired operating velocity of 25 m/s, and remaining constant until the end of the
test. Focusing on the motor pressure chamber (Figure 7c), the sequence begins with motor
ignition reaching a “static” section (red color), characterized by the pressure resulting from
the motor operation without the addition of water; this stage continues as long as the ram
pressure (in green) is lower than the motor chamber pressure. Once the vehicle velocity
reaches a sufficiently high level, i.e., the ram pressure exceeds the motor chamber pressure,
water flows into the motor through the front inlet, causing the pressure to increase until
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it reaches the stagnation pressure at the desired velocity (approximately 4 s of dynamic
section marked in blue). It results in a significant increase in motor thrust and specific
impulse. Figure 8a presents a photograph of the motor shortly after ignition. Figure 8b
presents a photograph of the water basin and the underwater moving vehicle during the
dynamic experiment, revealing a bright flame observed through the translucent polyester
fuel grain and casing of the motor.
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Figure 6. (a) Standard specific impulse, Isp (s), predicted by theoretical calculation vs. the W/P ratio
spanning from 0 to 3, across various O/F ratios ranging from 0.5 to 3. (b) Standard specific impulse,
Isp (s), and (c) chamber temperature, Tc (K), predicted by theoretical calculation vs. the O/F ratio
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3.2.2. Standard Specific Impulse

Over 20 experiments have been conducted under various conditions. The test data
created a performance map of the motor under underwater cruise conditions, which was
compared to static firing data reported in ref. [19] and theoretical calculations. Figure 9a–c
shows the standard specific impulse versus the W/P ratio for different O/F ratios. The
results reveal a significant increase in the specific impulse compared to a regular hybrid
rocket, reaching a maximum actual specific impulse of 380 s at O/F = 1.95 and W/P = 2.16.
Figure 10a–d presents the standard specific impulse versus the O/F ratio for different W/P
ratio ranges. The results show good alignment with the static test data and follow the
theoretical trends well, revealing an optimum in the O/F ratio close to the theoretical value
of 2.15. All of the results show a significant increase in the standard specific impulse up
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to 55%. The test results reveal the superiority of the marine ramjet (ram rocket) over the
rockets at a broad range of underwater cruise conditions.
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flow rate; (b) vehicle cruise velocity; and (c) chamber pressure.
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Figure 9. Theoretical, static [19], and dynamic (this study) standard specific impulses vs. W/P ratio
for different O/F ranges: (a) O/F range 1.5–1.8; (b) O/F range 1.8–2.1; and (c) O/F range 2.1–2.6.

3.2.3. Pressure Improvement

A key factor in the thrust augmentation of the marine ramjet is the stagnation (ram)
pressure. According to Bernoulli’s theorem, as the cruise speed increases, the stagnation
pressure increases quadratically:

P0 = Pw +
1
2

ρwu2 (9)

where P0 represents the ram (stagnation) pressure; Pw is the ambient water pressure; and
ρw is the water density. Figure 11 illustrates the measured chamber pressure of the motor
as a function of its speed, along with the theoretical ram pressure based on Equation (9).
The majority of our test results reached the desired stagnation pressure, thereby increasing
the motor pressure and thrust. However, in some cases, the difference between the motor
chamber pressure and the ram pressure was relatively large, requiring better adjustments to
the operating conditions. To address this issue, a suitable nozzle diameter ( dt) needed to be
designed for these specific conditions. This resulted in motor pressure values being closer
to the ram pressure, leading to better performance under desired conditions, as shown
in Figure 11 and marked in red and green. The improvement in the chamber pressure in
each experiment due to water ingestion compared to its static section pressure versus the
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W/P ratio is presented in Figure 12. The overall trend indicates a substantial increase in
pressure compared to the no-water-addition case with a rise in the W/P ratio, approaching
70% improvement in pressure. The dispersion in the results may be attributed to the static
section pressure dependence on the propellant mass flow rate, which is not represented
in the plot, as well as the different nozzle diameters used, generating higher chamber
pressures for a smaller diameter.
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Figure 10. Theoretical, static [19], and dynamic (this study) standard specific impulses vs. O/F ratio
for different W/P ranges: (a) W/P range 0.5–1; (b) W/P range 1–1.5; (c) W/P range 1.5–2; and (d)
W/P range 2–2.5.
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4. Conclusions

This paper presents, to the best of our knowledge, actual data from the first parametric
study of dynamic tests of a submerged water-breathing marine ramjet (ram rocket) under
various cruise conditions. The results demonstrate the motor’s characteristics under various
cruise speeds, O/F ratios, and W/P ratios. Compared to regular rocket motors, an increase
in the standard specific impulse of up to 55% was measured, with a maximum value of
380 s at optimal conditions, proving the large potential in the use of the water-breathing
ramjet for propelling high-speed underwater vehicles. The energetic performance can be
further enhanced by including water-reactive additives in the fuel. This is the planned task
for future investigations.
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