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A novel trajectories optimizing method for dynamic soaring based on deep 

reinforcement learning  

Abstract 

Dynamic soaring, inspired by the wind-riding flight of birds such as albatrosses, is a biomimetic technique which 

leverages wind fields to enhance the endurance of unmanned aerial vehicles (UAVs). Achieving a precise soaring 

trajectory is crucial for maximizing energy efficiency during flight. Existing nonlinear programming methods are heavily 

dependent on the choice of initial values which is hard to determine. Therefore, this paper introduces a deep reinforcement 

learning method based on a differentially flat model for dynamic soaring trajectory planning and optimization. Initially, 

the gliding trajectory is parameterized using Fourier basis functions, achieving a flexible trajectory representation with a 

minimal number of hyperparameters. Subsequently, the trajectory optimization problem is formulated as a dynamic 

interactive process of Markov decision-making. The hyperparameters of the trajectory are optimized using the Proximal 

Policy Optimization (PPO2) algorithm from deep reinforcement learning (DRL), reducing the strong reliance on initial 

value settings in the optimization process. Finally, a comparison between the proposed method and the nonlinear 

programming method reveals that the trajectory generated by the proposed approach is smoother while meeting the same 

performance requirements. Specifically, the proposed method achieves a 34% reduction in maximum thrust, a 39.4% 

decrease in maximum thrust difference, and a 33% reduction in maximum airspeed difference. 

Keywords Dynamic soaring; Differential flatness; Trajectory Optimization; Proximal Policy Optimization 

1.Introduction 

In modern and intelligent battlefield confrontations, unmanned aerial vehicles (UAVs) play a crucial role in defense, 

being widely used for monitoring, surveillance, and serving as pseudo-satellite communication relays. Typical methods 

to enhance a UAV’s endurance involve optimizing its aerodynamic configurations to amplify lift-to-drag ratios and 

enhance aerodynamic efficiency, advancing engine or battery energy efficiency, and exploring new energy sources such 

as  solar-powered and dynamic soaring UAVs. Among these methods, leveraging renewable energy sources to enhance 

flight endurance has emerged as a leading research focus, garnering growing interest from the scientific community. 

Solar-powered UAVs are the most studied for long-endurance applications due to the simplicity of using solar panels 

to convert solar energy into electrical power. A significant amount of in-depth work has already been completed[1–3]. 

In contrast to solar energy, wind energy stands out as another prominent renewable energy source. The utilization of wind 

fields for UAV flight, called dynamic soaring, is inspired by the remarkable long-distance flights of albatrosses, which 

traverse vast distances with minimal energy consumption[4]. Current research on dynamic soaring flight primarily 

encompasses three key areas: (1) biological observations for the study of gliding behavior, (2) analysis of mechanisms 

for acquiring energy during gliding, and (3) the planning and optimization of gliding trajectories. 

In 1883, British scientist Lord Rayleigh[5] presented a comprehensive study of the dynamic soaring behavior 

observed in albatrosses. Weimerskirch[6] utilized a GPS receiver and heart rate monitoring equipment to meticulously 

track albatrosses’ long flights and presented a thorough analysis of flight patterns and cardiovascular data. The research 

unveiled a fascinating revelation: albatrosses eschew anticipated linear trajectories within regions characterized by 

updrafts along the continental shelf edge, instead engaging in elegantly smooth circular movements.  

Richardson, Sachs, and other scholars elucidated the underlying gliding mechanism from the energy perspective 

and pointed out that gliding is sustained by the gradient wind field. The flight pattern, known as the Rayleigh cycle, 

consists of four stages in each iteration: ascending into the wind, executing high-altitude turns (from upwind to 

downwind), descending with the wind, and performing low-altitude turns (from downwind to upwind). In the late 1980s, 

Sachs[7] pioneered the idea that aircraft could harness energy from gradient wind fields through optimal control, akin to 

albatross flight. Subsequent studies further demonstrated the feasibility of small gliding UAVs achieving soaring flight 

and identified the requisite wind conditions[8–10]. Additionally, Mir introduced an innovative approach that integrates 

dynamic soaring with a morphing UAV, resulting in a 14%–15% reduction in required wind shear for a sustained flight, 

as well as decreases in drag, lift requirements, and angle of attack requirements by 15%, 11%, and 20%, respectively, 

while concurrently boosting maximum velocity by 6.2%. 

Although we have witnessed exciting progress, achieving sustained unpowered gliding across extended regions 

continues to pose significant challenges due to the dynamic nature of real-world wind patterns, which vary spatially and 

evolve over time. Presently, there is a dearth of effective techniques for accurately modeling these wind dynamics. 

However, within localized areas, wind conditions tend to exhibit relative stability over time, often being primarily 
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influenced by spatial positioning. Consequently, this study is primarily dedicated to optimizing trajectories for dynamic 

soaring within such fixed regions. Common approaches currently employed to tackle this issue encompass Gaussian 

pseudo-spectral methods[11], direct collocation techniques[12], and other variations[13]. 

In recent years, there has been significant attention on DRL based optimization methods for both linear and nonlinear 

system design. Vitaly[14] proposed a reinforcement learning approach to estimate the optimal launch time for defenders 

and the guidance law for targets in real-time. Peng[15] introduced a pioneering model-free control strategy, leveraging 

integral reinforcement learning techniques, to stabilize highly flexible aircraft under uncertainty. Concurrently, 

considerable research has explored RL techniques in dynamic soaring. Novati[16] demonstrated that DRL can identify 

gliding and landing strategies with various optimality criteria regardless of any explicit knowledge of underlying physics. 

They found that model-free RL leads to more robust gliding compared to model-based optimal control strategies. Zhao[17] 

introduced a Twin Delayed Deep Deterministic Policy Gradient (TD3) RL algorithm to investigate optimal strategies for 

unpowered gliders to harness energy from thermal updrafts. Reddy[18] identified an effective navigation strategy, 

employing RL to make sequential decisions in response to ascending thermal plumes (thermals). They validated the 

learned flight policy through field experiments, numerical simulations, and estimates of measurement noise due to 

atmospheric turbulence. 

Up to now, DRL methods have been predominantly used on static soaring, where energy is harvested from thermals, 

while there has been limited exploration into optimizing dynamic soaring through reinforcement learning. Thus, this 

paper endeavors to tackle the trajectory optimization challenge of dynamic soaring using the reinforcement learning 

technique with PPO2 algorithm. Initially, it constructs smooth and dynamically feasible flight paths utilizing the Fourier 

series as foundational functions through the differential flatness method, sidestepping the complexities associated with 

solving nonlinear system differential equations. Subsequently, a PPO2 based DRL approach is applied to iteratively 

update the hyperparameters. Compared against the nonlinear programming method, the proposed method offers better 

accuracy and robustness.  

The main contributions of this paper are as follows. (1) Utilizing the differential flatness method to determine 

optimal flight trajectories, represented through Fourier series as basis functions, enables examination of the flight patterns’ 

characteristics; (2) The reinforcement learning method mitigates the dependence on initial value settings inherent in 

traditional numerical optimization approaches; (3) Comparing optimization outcomes with those of the nonlinear 

programming (NP) method  showcases the viability of reinforcement learning in dynamic gliding trajectory planning and 

optimization. 

The rest of the paper is organized as follows. The background and preliminaries of this paper are stated in section 

II, while Section III delves into the trajectory construction method grounded in differential flatness and elucidates the 

core principles of the PPO2 method. Extensive simulations of the proposed trajectory optimal algorithm are shown in 

Section IV. Finally, Section V provides a summary of the research and offers insights into future directions.  

2. Background and preliminaries 

2.1. Windy field 

Generally, the wind field is defined as 𝑤 = 𝑓(𝑥, 𝑦, 𝑧, 𝑡), which reflects that the wind changes both with position and 
time. Meteorological observation studies indicate that under standard conditions, the variation of the wind field in a small 
area over a short period is minimal and typically negligible[19]. Based on this, to simplify the model, most research 
considers the wind field as a high shear gradient model occurring at the boundary layer between two regions with 
significantly different prevailing wind vectors[20]. This approach allows us to focus more on key factors, thereby 
enhancing the practicality and efficiency of the model. To approximate the wind shear, various mathematic models have 
been used to describe wind profiles, including linear[21], exponential[22, 23] or logarithmic models[24]. In this study, the 
exponential model with nonlinear correction parameters, as proposed by Zhao[25] is employed, which is given as: 

𝑤𝑥 = 𝛽[𝐴ℎ +
1 − 𝐴

ℎtr
ℎ2] (1) 

where, 𝑤𝑥  represents the wind speed in the x-direction, ℎ is the height, ℎtrdenotes the transition height at which the 
horizontal wind becomes constant with respect to altitude, 𝛽  is the average slope of the wind profile, and A is a 
hyperparameter dependent on environmental conditions. To ensure that the wind component remains within a certain range 
[0, 𝑤𝑥,max], it is required that 0 < 𝐴 < 2. The curves of different A values are illustrated in Fig. 1, where wind shear 

profiles correspond to logarithmic-like, exponential-like, and straight line wind profiles at 0 < 𝐴 < 1, 1 < 𝐴 < 2 and 𝐴 =
1, respectively. The value of 𝛽 = 0.05, ℎtr = 609.6, 𝐴 = 1.5 is chosen for this work.  

This wind field has three typical characteristics: ① it remains constant over time;  ② it aligns with the positive 

direction of the x-axis; ③  wind speeds are uniform within the same horizontal plane. 

Jo
urn

al 
Pre-

pro
of



 
 

 
Fig. 1. Wind shear profiles (𝛽 = 0.05, ℎtr = 609.6). 

2.2. Aerodynamics in windy environment 

Both the 3 degree-of-freedom (DOF) point-mass model and the 6 DOF rigid body dynamics model have been used 

for studying dynamic soaring. A comparison of the two models was carried out and it suggests that these two models 

offer comparable performance [21]. Due to its computational advantages, the 3 DOF point-mass model is used. This 

model is described in an inertial reference frame ℱI and a body-fixed reference frame ℱB , under the assumption of a flat, 

non-rotating Earth. 

As Fig. 2, the inertia frame ℱI can be defined with three unit vectors 𝒏̂1 point to the East, 𝒏̂2 to the North, and 𝒏̂3 

upward from a fixed point on the earth surface. The body-fixed reference frame ℱB with the three unit vectors 𝒆̂1 pointing 

through the nose, 𝒆̂2 pointing to the left of the aircraft, and 𝒆̂3 pointing upward in perpendicular to the other two axes 

following the right-hand rule.  

 

 
Fig. 2. Inertia frame ℱI and forces. 

The transformation from reference frame ℱI to reference frame ℱB can be realized through the following rotation matrix,  

𝑅ℱI
ℱB = 𝑅1,𝜙𝑅2,𝛾𝑅3,𝜓 (2) 

where 𝑅1,𝜙, 𝑅2,𝛾, and 𝑅3,𝜓 are elementary rotation matrices,  𝛾 is the flight path angle, 𝜓 is the heading angle,  𝜙 is the 

bank angle. Here, 𝑅1,𝜙 = [
1 0 0
0 cos𝜙 sin𝜙
0 −sin𝜙 cos𝜙

], 𝑅2,𝛾 = [
cos 𝛾 0 − sin 𝛾
0 1 0

sin 𝛾 0 cos 𝛾
], and 𝑅3,𝜓 = [

cos𝜓 sin𝜓 0
− sin𝜓 cos𝜓 0
0 0 1

]. When 

wind is considered, the absolute velocity of the aircraft in the inertial frame can be written as the summation of air-relative 
velocity and the wind velocity,  

𝑽|ℱ𝐼 = (𝑅ℱI
ℱB)

T
𝑽𝒂|ℱB +𝑾|ℱI  (3) 

where 𝑽|ℱI = [𝑥̇, 𝑦̇, 𝑧̇]T is the velocity of the aircraft in the inertial frame, 𝑥, 𝑦 and 𝑧 are coordinate along the 𝒏̂1, 𝒏̂2 and  

𝒏̂3, respectively. 𝑽a|ℱB = 𝑉a𝒆̂1 is the aircraft velocity relative to the wind. Then, we can use the Newton’s 2nd law to obtain 

its dynamics in the body frame,  

𝑚𝑽̇|
ℱB
= ∑𝑭|ℱB  (4) 

where 𝑚 is the mass of the aircraft, and 𝑭 is the force given by,  

∑𝑭 = (𝑇 − 𝐷 +𝑚𝑔 sin 𝛾)𝒆̂1 −𝑚𝑔 cos 𝛾 sin𝜙 𝒆̂2 + (𝐿 − 𝑚𝑔 cos 𝛾 cos𝜙)𝒆̂3 (5) 
where  𝐿 and 𝐷 are the lift and drag, respectively, and are described by:  
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𝐿 =  
1

2
𝜌𝑣a

2𝑆𝐶L (6) 

𝐷 =  
1

2
𝜌𝑣a

2𝑆𝐶D (7) 

where 𝜌 is the atmospheric density, 𝑆 is the wing area, and 𝐶D and 𝐶L are the coefficients of drag and lift respectively. The 
drag coefficient is given by the following equation: 

𝐶D  =  𝐶D0 + 𝐾𝐶L
2 (8) 

in which 𝐶D0 is the zero lift drag coefficient, and 𝐾 is the induced drag coefficient. 

Combining Eqs.(3)–(8), we can obtain the dynamics equations as follows[26], 

{
 
 
 
 

 
 
 
 

𝑥̇ = 𝑉a cos 𝛾 cos𝜓 + 𝑤𝑥
𝑦̇ = 𝑉a cos 𝛾 sin𝜓
𝑧̇ = −𝑉a sin 𝛾

𝑉𝑎̇ =
𝑇

𝑚
−
𝐷

𝑚
+ 𝑔 sin 𝛾 −

𝜕𝑤𝑥
𝜕ℎ

ℎ̇ cos 𝛾 cos(𝜓)

𝛾̇ =
−𝐿 cos𝜙 +𝑚𝑔 cos 𝛾

𝑚𝑉a
+
1

𝑉a

𝜕𝑤𝑥
𝜕ℎ

ℎ̇ sin 𝛾 cos(𝜓)

𝜓̇ = −
𝐿 sin𝜙

𝑚𝑉a cos 𝛾
+

1

𝑉a cos 𝛾

𝜕𝑤𝑥
𝜕ℎ

ℎ̇ sin(𝜓)

 (9) 

Similar to the treatment in many existing studies[25, 27, 28], the lift coefficient, and bank angle will be treated as 

control inputs. 

3. Method design 

3.1. Optimization via differential flatness  

The trajectory optimization is formulated by using Differential Flatness. Flatness is a property of systems that extends 
the controllability concept of linear systems to nonlinear systems. In a flat system, both state and control can be represented 
by a set of flat outputs (which can be hypothetical) and their derivatives. The advantage of the differential flatness approach 
lies in its ability to simplify complex nonlinear control problems into relatively more manageable trajectory tracking 
problems. 

Focusing on the characterization of the flight trajectories, we use Fourier series as basis functions to represent the 
flight trajectories, which are infinitely differentiable. There are several advantages of using Fourier series as basis 
functions: 1) it allows us to use a very limited number of parameters (i.e., magnitudes and phases of basis functions) to 
represent a complex trajectory; 2) these parameters have physical meaning related to the overall shape of the trajectory; 
and 3) they are continuously differentiable, which ensures smoothness of optimal trajectories and makes it easy to find 
their derivatives. A cyclic loitering trajectory can be represented as:  

{
 
 
 
 

 
 
 
 𝑥 = 𝑎𝑥,0 +∑𝑎𝑥,𝑖

𝑀

𝑖=1

sin (
2π𝑖𝑡

𝑡f
+ 𝜃𝑥,𝑖)

𝑦 = 𝑎𝑦,0 +∑𝑎𝑦,𝑖

𝑀

𝑖=1

sin (
2π𝑖𝑡

𝑡f
+ 𝜃𝑦,𝑖)

𝑧 = 𝑎ℎ,0 +∑𝑎𝑧,𝑖

𝑀

𝑖=1

sin (
2π𝑖𝑡

𝑡f
+ 𝜃𝑧,𝑖)

 (10) 

where 𝑡f  is the time for one cycle of flight, 𝑎𝑘,𝑖  are the coefficients represent the magnitude of the corresponding 

frequency components with 𝑘 = 𝑥, 𝑦, 𝑧, and 𝑖 = 0,⋯ ,𝑀, 𝜃𝑘,𝑖 are the phase angles of the different frequency components. 

The parameters to be optimized form a decision vector given as： 

𝑋 = [𝑎𝑥,0, ⋯ , 𝑎𝑥,𝑀, 𝑎𝑦,0, ⋯ , 𝑎𝑦,𝑀, 𝑎𝑧,0, ⋯ , 𝑎𝑧,𝑀,𝜃𝑥,0, ⋯ , 𝜃𝑥,𝑀, 𝜃𝑦,0, ⋯ , 𝜃𝑦,𝑀, 𝜃𝑧,0, ⋯ , 𝜃𝑧,𝑀, 𝑡𝑓] (11) 

According to Eq.(10), the derivatives of 𝑥, 𝑦, and 𝑧 can be obtained as: 
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{
  
 

  
 𝑥̇ =

2π𝑖𝑎𝑥,𝑖
𝑡f

cos (
2π𝑖𝑡

𝑡f
+ 𝜃𝑥,𝑖)

𝑦̇ =
2π𝑖𝑎𝑦,𝑖
𝑡f

cos (
2π𝑖𝑡

𝑡f
+ 𝜃𝑦,𝑖)

𝑧̇ =
2π𝑖𝑎ℎ,𝑖
𝑡f

cos (
2π𝑖𝑡

𝑡f
+ 𝜃𝑧,𝑖)

 (12) 

Using {𝑥, 𝑦, 𝑧} in Eq.(12) as flat output, then we can solve for the other states and controls from Eq.(9) as: 

𝑉a = √(𝑥̇ − 𝑤𝑥)
2 + 𝑦̇2 + 𝑧̇2 (13) 

𝛾 = asin (−
𝑧̇

𝑣a
) (14) 

𝜓 = atan (
𝑦̇

𝑥̇ − 𝑤𝑥
) (15) 

𝜙 = 𝑎tan (
𝑣acos 𝛾 𝜓̇ − 𝑤̇𝑥sin 𝜓

𝑣a𝛾̇ − 𝑔cos 𝛾 − 𝑤̇𝑥sin 𝛾 cos 𝜓
) (16) 

𝐶L =
−𝑚(𝑣a𝛾̇ − 𝑔cos 𝛾 − 𝑤̇𝑥sin 𝛾 cos 𝜓)

0.5𝜌𝑆𝑉a
2 cos𝜙

 (17) 

It worth noting that, 𝑉a, 𝛾, and 𝜓 can be exactly solved from the first three equations of Eq.(9); however, the problem 
is over constraint when we solve for two controls from there equations. Here, a virtual thrust 𝑇 is defined such that: 

𝑇 = 𝑚𝑉̇a + 𝐷 −𝑚𝑔sin 𝛾 + 𝑚𝑤̇𝑥cos γ cos ψ (18) 

This virtual thrust controls the speed of the aircraft. Constraints will be imposed on this thrust force to prevent the 

aircraft from changing speed too fast. 

After solving the inverse dynamics problem, we can establish an optimization problem for dynamic soaring 

trajectories, with the objective of minimizing the energy expended by virtual thrust while adhering to a set of constraints. 

These constraints encompass various considerations, such as parameter limits, 

{
 
 
 

 
 
 
𝑎𝑥,min ≤ 𝑎𝑥,𝑖 ≤ 𝑎𝑥,max
𝑎𝑦,min ≤ 𝑎𝑦,𝑖 ≤ 𝑎𝑦,max
𝑎𝑧,min ≤ 𝑎𝑧,𝑖 ≤ 𝑎𝑧,max
𝜃𝑥,min ≤ 𝜃𝑥,𝑖 ≤ 𝜃𝑥,max
𝜃𝑦,min ≤ 𝜃𝑦,𝑖 ≤ 𝜃𝑦,max
𝜃𝑧,min ≤ 𝜃𝑧,𝑖 ≤ 𝜃𝑧,max
𝑡f,min ≤ 𝑡f ≤ 𝑡f,max

 (19) 

State constraints: 

{
 
 

 
 
𝑥min ≤ 𝑥 ≤ 𝑥max 
𝑦min ≤ 𝑦 ≤ 𝑦max
𝑧min ≤ 𝑧 ≤ 𝑧max

𝑉a,min ≤ 𝑉a ≤ 𝑉a,max
𝛾min ≤ 𝛾 ≤ 𝛾max
𝜓min ≤ 𝜓 ≤ 𝜓max

 (20) 

Control constraints: 

{

𝐶L,min ≤ 𝐶L ≤ 𝐶L,max
𝜙min ≤ 𝜙 ≤ 𝜙max
𝑇min ≤ 𝑇 ≤ 𝑇max

 (21) 

where [∙]min and [∙]max represent the minimum and maximum values of the variables. Both the state and control and 

virtual thrust constraints are enforced for the whole trajectory. The other type of constraints depends on the problem of 

interest and will be introduced in section Ⅳ. There are many algorithms and software packages (e.g., OptimTraj [29], 

FALCON.m [30], and GPOPS-II [31]) that can help solve nonlinear optimal control problems. In this paper, the 

optimization problem was tackled using DRL with PPO2 algorithm, while also comparing the results with those obtained 

using NP method with interior point algorithm. Further details will be provided in Section Ⅳ. Next, a brief overview of 

the PPO2 method will be presented. 

3.2. Optimization via PPO2 
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PPO2 is a policy-based approach with an actor-critic architecture. Here, the actor and critic are two neural networks 

characterized by parameters 𝜃𝑢 and 𝜃𝑄, respectively. The actor network’s parameters 𝜃𝑢 are utilized to approximate the 

policy function 𝜋(a|s, 𝜃𝑢), while the critic network’s parameters 𝜃𝑄  are employed to estimate the value function 𝑉𝑠 . 
Specifically, the actor’s policy function, is modeled as a normal distribution, yielding mean and variance outputs from 

the actor network, denoted as 𝑢 and 𝛿. During policy execution, actions are stochastically sampled from this normal 

distribution, and the agent executes the corresponding action. Subsequently, the critic network assesses the state, 

represented as a scalar, to evaluate the state post-execution of the action. 

 

 
Fig. 3. Reinforcement learning trajectory optimization. 

This paper proposes a method for formulating the gliding path optimization problem as a Markov Decision Process 

(MDP) that accounts for environmental uncertainties, and employs the PPO2 algorithm—a sophisticated dynamic 

interactive learning technique—to address the optimization of gliding paths in localized small areas. This approach is 

detailed and explained in Fig. 3. Assuming that the agent’s next state depends solely on its current state, not its previous 

state (Markov property) denoted as 𝒫[𝑠𝑡+1|𝑠𝑡] = 𝒫[𝑠𝑡+1|𝑠1, 𝑠2, ⋯ , 𝑠𝑡], where 𝑠𝑖 is the state of time 𝑖, 𝑖 ∈ [1,2,⋯ , 𝑡 + 1]. 
The transition between states is governed by a state transition probability matrix 𝒫, and the efficacy of decisions is 

gauged by rewards 𝑅. The parameters of the target deep neural network are periodically updated. Under policy π, the 

actor network is trained to maximize cumulative rewards by updating its policy parameters 𝜃𝑢 using the gradient ascent 

method with a weighting coefficient of 𝑇𝐷 − error, while the critic network parameters are updated with the objective 

of minimizing 𝑇𝐷 − error. To circumvent the “positive number trap” issue of the Policy Gradient (PG) algorithm, we 

introduce a weighting coefficient, which is formulated as follows, 

𝑇𝐷 − error =  𝛾𝑣(𝑠𝑡+1) + 𝑅𝑡+1 − 𝑣(𝑠𝑡) (22) 

𝑣𝜋(𝑠) = 𝐸𝑠𝑡𝑠𝑡+1,…(𝑅𝑡+1 + 𝛾𝐺(𝑠𝑡+1))  = 𝐸𝑠𝑡 (𝑅𝑡+1 + 𝛾𝐸𝑠𝑡+1,…(𝐺(𝑠𝑡+1)))   = 𝐸(𝑅𝑡+1 + 𝛾𝑣(𝑠𝑡+1)) 

  = ∑𝜋(𝑎|𝑠)(𝑅𝑠
𝑎 + 𝛾 ∑ 𝑃𝑠𝑡𝑠𝑡+1

𝑎 𝑣𝜋(𝑠𝑡+1)

𝑠𝑡+1∈𝑆

)

𝑎∈𝐴

 
(23) 

where 𝐴 is the action space, 𝑆 is the state space, 𝑠 is the input observation, 𝑢(𝑠) ∈ 𝐴 is the model’s predicted mean action, 

and 𝛿(𝑠) ∈ ℝ𝐴  is the standard deviation. The probability density function of the diagonal Gaussian distribution is 

expressed as follows, 

𝒫(𝑎; 𝑢, 𝛿) =
1

√(2π)|𝐴|∏ 𝛿𝑖
2|𝐴|

𝑖=1

exp(−
1

2
∑

(𝑎𝑖 − 𝑢𝑖)
2

𝛿𝑖
2

|𝐴|

𝑖=1

) (24) 

where,𝑎 ∈ 𝐴，𝑢 = (𝑢1, 𝑢2, ⋯ , 𝑢|𝐴|). Consequently, the logarithmic probability of the action 𝑎 is: 
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log𝒫(𝑎; 𝑢, 𝛿)

= log
1

√(2π)|𝐴|∏ 𝛿𝑖
2|𝐴|

𝑖=1

−
1

2
∑

(𝑎𝑖 − 𝑢𝑖)
2

𝛿𝑖
2 = −

1

2
log((2𝜋)|𝐴|) −

1

2
∑log(𝛿𝑖

2)

|𝐴|

𝑖=1

−
1

2
∑

(𝑎𝑖 − 𝑢𝑖)
2

𝛿𝑖
2

|𝐴|

𝑖=1

|𝐴|

𝑖=1

= −
1

2
|𝐴|log(2𝜋) −

1

2
∑log(𝛿𝑖

2)

|𝐴|

𝑖=1

−
1

2
∑

(𝑎𝑖 − 𝑢𝑖)
2

𝛿𝑖
2

|𝐴|

𝑖=1

 

(25) 

The rate of data acquisition fails to match the training pace of the network is a bottleneck issue for reinforcement 

learning. To address this, an experience replay mechanism is proposed. It involves constructing a dataset 
(𝑠𝑡, 𝑎, 𝑠𝑡+1, 𝑅𝑡+1, 𝑖𝑛𝑓𝑜), where 𝑠𝑡  and 𝑠𝑡+1 represent the states at respective time steps 𝑡 and 𝑡 + 1, while 𝑎 and 𝑅𝑡+1 

signify the actions and rewards executed from one state to the next, along with a termination flag 𝑖𝑛𝑓𝑜 for each training 

episode. During each interaction between the agent and the environment, these datasets are stored in a replay buffer. 

Once a certain amount of data is collected, a batch of data is extracted for neural network training. Following training, 

the game continues, and the newly generated data is added to the replay buffer. This enables the utilization of previously 

generated data for training, significantly enhancing training speed while reducing over-fitting issues caused by excessive 

reliance on local experiences during the training process. 

The experience replay mechanism effectively addresses the mismatch between data collection rates and the training 

speed of deep learning networks, significantly improving the efficiency of data utilization. However, it also introduces a 

challenge: ensuring consistency between data generated by an old policy and the updated current policy when the former 

is used to inform the latter. To address this challenge, this paper introduces an important sampling technique. This 

technique adjusts the weight of samples by calculating the ratio of probabilities of taking a specific action under different 

policies, thereby reducing sampling bias, improving the accuracy of policy estimation, and ensuring the compatibility of 

data across different policies. 

To update policy 𝒫 using data sampled from policy 𝐵, the weight coefficient can be calculated with the following 

formula: 

𝑖𝑤 = 𝒫(𝑎) 𝐵(𝑎)⁄  (26) 
Here, policy 𝒫 and policy 𝐵 represent the current policy and the old policy used to generate data, respectively, while 

action 𝑎 is the action considered under both policies. 

During the interaction between the agent and the environment, reinforcement learning relies on a reward feedback 

mechanism to identify and select the optimal actions. This mechanism guides the achievement of predetermined goals 

by maximizing the average reward. Designing an appropriate reward function is crucial for reinforcement learning, as it 

directly determines the effectiveness of training and the precision of the final outcomes. In this study, the design of the 

reward function has focused on two key priorities: first, ensuring that the aircraft's flight status complies with specific 

boundary constraint conditions; and second, minimizing the thrust work of the unmanned aerial vehicles (UAVs). Taking 

into account these considerations, the reward function is designed as follows: 

𝑅 = 𝑅over + 𝑅power (27) 

where 𝑅over ensures that the optimized trajectory meets the boundary constraint conditions, and 𝑅power minimizes the 

thrust work through these constraints. 

 Given the transmission rate limitation of command sending during flight, the trajectory ℒ = 𝑓(𝑥, 𝑦, 𝑧) is first 

discretized with a time interval of ∆𝑡. After discretization, the number of discrete points within one cycle is denoted as 

𝑁 =
𝑡f

∆𝑡
. To ensure that the state of the UAVs remains within the constraint range at each discrete point, the article uses 

the quantity of states exceeding the constraints, denoted as 𝑁over, as a penalty term incorporated into the reward function： 

𝑅over =
𝑡f
∆𝑡
− 𝑁over (28) 

Assuming that the motion of the UAVs within each time interval is uniform, the approximation of the thrust doing 

work can be expressed as： 

 

𝐸 = 𝐸1 + 𝐸2 +⋯+ 𝐸𝑁−1 =∑𝑇𝑖𝑣𝑎𝑖∆𝑡

𝑁

𝑖=1

 (29) 

where 𝑇𝑖, 𝐸𝑖 and 𝑣𝑎𝑖 are thrust, power of thrust and airspeed at the step 𝑖,respectively. ∆𝑡 is a constant time interval. 

Within the same time interval, even if the thrust work of the UAVs remains constant, the energy efficiency may 

vary due to differences in the UAVs’ flight distances. Therefore, in this paper, to provide a more precise description of 

energy consumption, a parameter 𝑃 =
𝐸

∆ℒ
 is introduced to denote the energy consumption rate per unit distance. Assuming 
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the UAVs undergoes uniform motion within each time interval, denoted as 𝑆 = 𝑣𝑎𝑖∆𝑡, 𝑃  can be derived as, 

𝑃 =
𝐸1
∆ℒ1

+
𝐸2
∆ℒ2

+⋯+
𝐸𝑁−1
∆ℒ𝑁−1

= ∑
𝑇𝑖𝑣𝑎𝑖∆𝑡

𝑣𝑎𝑖∆𝑡

𝑁−1

𝑖=1

=∑𝑇𝑖

𝑁

𝑖=1

 (30) 

where ∆ℒ𝑖 is the length of the flight at time step 𝑖. 

Summing up, the constraint conditions 𝑅power is designed as follows： 

𝑅power = 𝜉 ×𝒜𝑃 (31) 

where, 𝑅power  is a decreasing function that diminishes as the thrust work increases, while  𝜉  and 𝒜  are two 

hyperparameters,  𝜉 > 0 and 0 < 𝒜 < 1 . 

 

4. Simulation 

In this section, the performance of the proposed method is evaluated by numerical simulations based on the small 

glider SBXC[32]. The parameters of the aircraft are given in Table 1. Similar to the albatross parameters, those of the 

glider pertain solely to the simplified 3-degree-of-freedom (DOF) motion equations, utilized for trajectory optimization 

and energy harvesting analysis.  

 

Table 1 

The parameters of glider. 

Parameter Explanation Value Units 
𝑚 Vehicle mass 5.443 kg 
𝑏 Wing span 4.32 m 
𝑆 Wing reference area 0.957 m2 
𝐶D0  Parasitic drag coefficient 0.017 - 
𝐾 Induced drag factor 0.0192 - 
𝑛max Maximum lift-drag ratio 3 - 

The state vector encompasses position coordinates, airspeed, flight path angle, heading angle, and wind speed, 

represented by 𝑠𝑡 = [𝑥𝑡 , 𝑦𝑡, 𝑧𝑡, 𝑣𝑎𝑡 , 𝛾𝑡 , 𝜓𝑡, 𝑤𝑥𝑡]. And the constrains related to these variables are summarized in Table 2 

Notice that for the DRL, the initial state of the UAV is randomly sampled from a uniform distribution within the specified 

ranges in Table 2. 

 

Table 2 

The constrains of the variables. 

Parameter Description Value or interval Units 

𝑥 Position in the X-axis direction [−1000, 1000] m 
𝑦 Position in the Y-axis direction [−1000, 1000] m 
𝑧 Position in the Z-axis direction [10, 360] m 
𝑎𝑥 The amplitude coefficients of the 𝑥 [−1000, 1000] - 
𝑎𝑦 The amplitude coefficients of the 𝑦 [−1000, 1000] - 

𝑎𝑧 The amplitude coefficients of the 𝑧 [−1000, 1000] - 
𝜃𝑥 The phase position coefficients of the 𝑥 [−180, 180] deg 
𝜃𝑦 The phase position coefficients of the 𝑦 [−180, 180] deg 

𝜃𝑧 The phase position coefficients of the 𝑧 [−180, 180] deg 
tf Cycle time [0, 200] s 
𝑣a Airspeed [9.54, 73.2] m/s 
𝜓 Flight path angle [−180, 180] deg 
𝛾 Heading angle [−60, 60] deg 
𝜙 Bank angle [−60, 60] deg 
𝐶L Lift coefficient [−0.3, 1.2]  

The hyper-parameters used in DRL training in this work are outlined in Table 3. It’s important to note that the 
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adjustment of hyper-parameters significantly impacts the performance of PPO2 algorithm. However, there is currently 

no unified rule for adjusting hyper-parameters. Therefore, we fine-tuned these hyper-parameters through several trial and 

error test to solve the trajectory optimization problem addressed in this paper. 

Table 3 

The hyper-parameters of DRL. 

Parameter Description Value 

𝜁 Discount factor 0.99 
𝜖 Entropy coefficient 0.01 
𝜆 Learning-rate 2.5e-4 
𝑉coef Value function coefficient 0.5 
𝜂 Discount factor 0.95 
𝜛 Ration clipping 0.2 

 The following are the results for the initial guesses mentioned in the problem description for the Fourier Harmonics 
of 𝑀 = 3 and nodes of 𝑁 = 1500(𝑁 = 500 𝑀). The convergence pattern of the average reward and the sum of thrust per 
cycle in training the DRL is shown in Fig. 4. From this paper, it can be clearly observed that the average reward converges 
to the steady-state within 1 × 106, meanwhile the sum of thrust per cycle remains stable around 3000 𝑁. 

 

 

 

Fig. 4. Learning curve of the DRL. 

As shown in Fig. 5, the variation of thrust over time during the last 10 training sessions of the DRL method is 
illustrated. It can be observed that the thrust within each cycle achieves good stability and exhibits a symmetrical 

distribution. Besides，a comparison is made between DRL and NP method. the positional results over time during 

one cycle are shown in Fig. 6. It is evident that while both methods display overall consistent trends in positional 
coordinates within one cycle, there are differences, primarily in the extent of the flight space. As Table 4, the height 
differences between the periodic trajectories obtained by the two methods are respectively 31.5973 m  and 
33.6542 m, indicating minor disparities. Additionally, it is apparent that the flight trajectory within one cycle can be 
divided into four phases: upwind climb, high-altitude turn (from upwind to downwind), downwind descent, and low-
altitude turn (from downwind to upwind). This observation is consistent with the findings of Richardson [33], 
Sachs[34], and other scholars. 

 

 
Fig. 5. Thrust of the last 10 episodes. 

 

Table 4 

Comparison results of position. 
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Parameter NP DRL 

Distance along the X-axis 206.0883 m 76.7015 m 
Distance along the Y-axis 400.0075 m 57.1816 m 
Distance along the Z-axis 33.6542 m 31.5973 m 

 

 

 
Fig. 6. Time history of position. 

In Fig. 7, we present a comparative analysis of the temporal variation of airspeed, flight path angle, and heading 

angle over the course of a single cycle for the two methodologies in question. This visualization elucidates the 

dynamic behavior of these parameters, offering insights into the performance characteristics of each method. From 

the graph, it can be observed that the overall trends of airspeed and track angle are consistent, but there are 

significant differences in the heading angle. Table 5 shows that the maximum values of these parameters within one 

cycle are respectively [12.9399 m/s, 1.9530°, 10.4976°]  and [17.4243 m/s, 3.7454°, 70.1324°] , with 

corresponding ranges of variation being [3.1893 m/s, 6.0645°, 17.3776°] and [8.7217 m/s, 9.0504°, 158.8662°]. 
Compared to the NP method, the DRL method results in reductions of 63.4%, 33%, and 89.1% in the ranges of 

variation, respectively.

 

Table 5 

Comparison results of flight parameters. 

Parameter NP DRL 

𝑣a difference 8.7217 m/s 3.1893 m/s 
𝛾 difference 9.0504° 6.0645° 
𝜓 difference 158.8662° 17.3776° 
Maximum 𝑣a 17.4243 m/s 12.9399 m/s 
Maximum 𝛾 3.7454° 1.9530° 
Maximum 𝜓 70.1324° 10.4976° 
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Fig. 7. Time history of  flight parameters. 

As depicted in Fig. 8 and Table 6, the lift coefficient and thrust show consistent variations between the two 

methods within a single cycle. Notably, each method's thrust and lift coefficient demonstrate opposing trends, in 

line with conventional expectations. Furthermore, the maximum control inputs for each method within one cycle 

are [0.6280°, 0.9569,5.4309𝑁]  and [5.3335°, 1.1952,8.2322𝑁], with maximum ranges of control inputs being 

[1.2466°, 0.4155,4.9879𝑁]  and [9.8184°, 0.8956,8.2269𝑁] . Compared to the NP method, the DRL method 

reduces the ranges of variation in control inputs by 87.3%, 53.6%, and 39.4%, respectively, and decreases the 

required maximum thrust by 34%. It is evident that the control inputs obtained from the proposed method are more 

stable within one cycle. 

 

Table 6 

 Comparison results of control parameters. 

Parameter NP DRL 

𝜙 difference 9.8184° 1.2466° 
𝐶L difference 0.8956 0.4155 
𝑇 difference 8.2269N 4.9879N 
Maximum 𝜙 5.3335° 0.6280° 
Maximum 𝐶L 1.1952  0.9569 
Maximum 𝑇 8.2322𝑁 5.4309𝑁 
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Fig. 8. Time history of control parameters. 

As depicted in Table 7, Fig. 9 and Fig. 10, both methods produce trajectories resembling a figure "8" shape, 

meanwhile the thrust output and altitude changes within a single cycle are compared in Fig. 11, reveals that the 

thrust from each method reaches a peak, albeit at different times. The peak thrust from the DRL method is lower 

than that from the NP method and shows an approximate cyclic symmetry. Additionally, both methods display a 

consistent trend in altitude variations, but the trajectories of DRL shows a higher central height of 

157.7954 mcompared to 103.5278 m for NP method which indicates that it operates in a more intense wind 

environment. The wind speed range for the two methods recorded in one cycle are 9.8229– 11.7837 m/s and 

6.1943– 8.4326 m/s, respectively. 

Table 7 

Comparison results with NP. 

Parameter DRL NP 

Height center 157.7954 m 103.5278 m 
Average thrust 1.8630𝑁 1.4468𝑁 
Maximum wind 11.7837 m/s 8.4326 m/s 
Minimum wind 9.8229 m/s 6.1943 m/s 

 

 

 
Fig. 9. The trajectory of DRL. 

 

 
Fig. 10. The trajectory of NP method. 

 

 
Fig. 11. Comparison of thrust and height. 

The relevant research in this paper is based on the assumption that the wind field only exhibits gradient changes in the 

vertical direction and remains constant within the same horizontal plane regardless of position changes. To facilitate comparison, 

the paper adjusts the center points of trajectory projections on the horizontal plane to the origin [0,0] for each cycle. The 

relevant operational process is outlined below: 
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𝑋̂𝑖 = (max(𝒙𝒊) + min(𝒙𝒊))/2 
𝒙̆𝑖  =  𝒙𝒊 − 𝑋̂𝑖 

𝑌̂𝑖 = (max( 𝒚𝒊) + min( 𝒚𝒊))/2 
𝒚̆𝒊  =  𝒚𝒊 − 𝑌̂𝑖 

(32) 

where, max[∙]  and min[∙]denote the maximum and minimum values of a variable, respectively.Additionally,  𝑋̂𝑖  and 𝑌̂𝑖 

represent the midpoints of the coordinate vector 𝒙𝒊 and 𝒚𝒊 in x-direction and y-direction, respectively, for one cycle of 𝑖 
episode. 𝒙̆𝑖 and 𝒚̆𝒊  are the coordinate vector after transforming. Through the aforementioned processing, the influence of 

varying initial positions within the initial horizontal plane on the comparison results is mitigated. Fig. 12 illustrates trajectories 

obtained under ten different initial states. It is evident that the trajectory planning method proposed in this paper can effectively 

accommodate diverse initial conditions and yield favorable optimization outcomes, thereby addressing the limitations arising 

from the heavy reliance of conventional numerical optimization methods on initial values. 

 

 

 
 

Fig. 12. The trajectory of DRL with different initial state.

 

5. Conclusions 

 In this paper, a differential flat model based deep reinforcement learning approach is proposed to iteratively 
optimizing and maintaining dynamic soaring trajectories.  Initially, this method reformulates the traditional global 
optimization problem as iterative optimization through interactions between an agent and uncertain environment following 
Markov processes. Leveraging the principles of differential flatness, we utilize Fourier series base functions for trajectory 
modeling, aiming to minimize the number of parameters for optimization. Subsequently, a trajectory hyper-parameters 
solver utilizing DRL is proposed, with the goal of minimizing thrust work. The resulting trajectory agrees well with those 
in the published work, where a soaring trajectory consists of four stages: windward ascent, high-altitude turns, leeward 
descent, and low-altitude turns. 

Compared to the results from the conventional nonlinear optimization, it reveals that the precision of the proposed 
method is on par with that of traditional nonlinear programming approaches. This observation lends support to the 
feasibility of employing reinforcement learning techniques for dynamic soaring trajectory planning. Notably, the proposed 
method is less sensitive to choices for initial values. This establishes a robust groundwork for further exploration into real-
time navigation control of unmanned aerial vehicles during dynamic soaring. 
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