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A review of current studies on the unmanned aerial 

vehicle-based moving target tracking methods 

Abstract 

Unmanned aerial vehicles (UAVs) have become crucial tools in moving target tracking due to their agility and 

ability to operate in complex, dynamic environments. UAVs must meet several requirements to achieve stable 

tracking, including maintaining continuous target visibility amidst occlusions, ensuring flight safety, and achieving 

smooth trajectory planning. This paper reviews the latest advancements in UAV-based target tracking, highlighting 

information prediction, tracking strategies, and swarm cooperation. To address challenges including target 

visibility and occlusion, real-time prediction and tracking in dynamic environments, flight safety and coordination, 

resource management and energy efficiency, the paper identifies future research directions aimed at improving the 

performance, reliability, and scalability of UAV tracking system. 

Keywords: Unmanned Aerial Vehicle (UAV); Tracking methods; Moving targets; Information prediction; 

Tracking strategies; Swarm cooperation 

 

1. Introduction 

1.1. Background 

In the current era of rapid technological advancement, the field of unmanned aerial vehicles (UAVs) has 

witnessed significant expansion and diversification [1–8]. A particularly intriguing and challenging application 

within this domain is the use of UAVs for tracking moving targets [9–14]. This shift in technological paradigms is 

driven by the pressing demand for surveillance solutions that are efficient, safe, and cost-effective. Such solutions 

are essential across a wide range of sectors, including both military operations and civilian applications. 

As depicted in Fig. 1, the capability to accurately and continuously follow a moving target using a UAV has 

extensive implications in various sectors, such as the military [15,16], surveillance [17,18], environmental 

monitoring [19,20], and search-and-rescue operations [21,22]1. 

 

                                                             

1 The source information for Fig. 1 is as follows:  

https://unidir.org/event/in-the-crosshairs-addressing-military-drone-use-and-proliferation/ 

https://www.criminalsecurityintel.com.au/security-specialist-consulting/aerial-surveillance-security-patrol/ 

https://mapware.com/blog/drone-enabled-remote-sensing-and-environmental-monitoring/ 

https://dronetechguide.com/drone-search-and-rescue/ 
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https://mapware.com/blog/drone-enabled-remote-sensing-and-environmental-monitoring/


 

Fig. 1. Examples of utilizing a UAV to track moving targets: (a) Military; (b) Surveillance and security; (c) 

Environmental monitoring; (d) Search-and-rescue operations. 

1.1.1. Military applications 

In military scenarios, UAVs have become indispensable for tracking moving targets. Equipped with advanced 

tracking systems, these UAVs provide real-time data on the position, speed, and direction of potential targets, such 

as enemy vehicles, moving troops, or low-flying aircraft. This information is crucial for strategic decision-making, 

including planning airstrikes, ambushes, and monitoring enemy convoy movements. The stealth capabilities of 

certain UAVs, coupled with their ability to loiter over areas for extended periods, enable them to gather 

intelligence without easy detection. Consequently, this has revolutionized military reconnaissance and surveillance 

operations, facilitating more precise and timely responses to potential threats. 

1.1.2. Surveillance and security 

In urban environments, UAVs are effectively employed to monitor the movements of suspicious vehicles or 

individuals, thereby aiding criminal investigations. For instance, in the event of a high-profile theft or a potential 

terrorist threat, UAVs can be swiftly deployed to track suspects, providing law enforcement agencies with critical 

information regarding escape routes and potential hideouts. Furthermore, UAVs are instrumental at large-scale 

public events, such as sports games, concerts, or political rallies, where they monitor crowd dynamics and identify 

any abnormal behavior or potential security threats. This capability significantly contributes to maintaining public 

order and ensuring the safety of attendees. 

1.1.3. Environmental monitoring 

In the environmental domain, the use of UAVs for tracking moving targets has opened up new avenues for 

research and conservation efforts. In wildlife studies, UAVs are particularly valuable for monitoring the 

movements of migratory animals. By tracking herds of animals, such as wildebeests, during their annual 
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migrations, researchers can gather critical data on migration patterns, preferred routes, and stopover points. This 

information is essential for understanding the ecological needs of these species and for developing effective 

conservation strategies. Similarly, UAVs equipped with sensors can be utilized in marine studies to monitor the 

movement of floating debris, marine mammals, or schools of fish. This capability aids in evaluating the health of 

marine ecosystems and understanding the impact of human activities, such as pollution and overfishing. Thus, 

UAVs serve as a powerful tool in both terrestrial and marine environments, enhancing our ability to conduct 

comprehensive ecological research and implement informed conservation measures. 

1.1.4. Search-and-rescue operations 

The ability of UAVs to track moving targets is a potentially life-saving asset during search and-rescue 

missions. In natural disasters such as earthquakes, floods, or hurricanes, survivors often move in search of safety. 

UAVs can be rapidly deployed to cover extensive areas, identifying the locations of these moving individuals. 

Additionally, UAVs enhance the coordination of rescue efforts by tracking the movements of rescue teams, 

ensuring efficient collaboration among different units. In maritime search-and-rescue operations, UAVs are 

invaluable for monitoring the drift of lifeboats or the movements of distressed vessels, thereby enabling rescuers to 

reach victims promptly. 

1.2. Motivations 

Tracking moving targets with UAVs presents several key challenges, primarily due to the dynamic nature of 

both the targets and the environments in which they operate. One of the most significant difficulties is maintaining 

continuous target visibility. In complex environments, obstacles such as buildings, trees, and weather conditions 

like fog or rain can obstruct the UAV's line of sight, causing sensor data interruptions. These occlusions can result 

in delays or even complete loss of track, making real-time tracking unreliable. 

Ensuring UAV safety is another major concern. As UAVs follow highly mobile targets, they must 

continuously adjust their flight paths to avoid both environmental obstacles and other UAVs. External disturbances 

like wind or sudden weather changes can destabilize the UAV’s flight path, requiring advanced control 

mechanisms to ensure stable operation. This challenge becomes more pronounced when multiple UAVs are 

involved, as coordination between them is needed to maintain both safety and accuracy. 

Trajectory smoothness is equally important. UAVs must quickly respond to sudden changes in target behavior, 

such as speed or direction alterations, while maintaining smooth and precise flight paths. Abrupt adjustments can 

lead to tracking errors or instability, making it essential to balance responsiveness with smooth, continuous 

trajectories. 

These challenges are especially critical in real-time applications, where any processing delays or disruptions 

can compromise tracking performance. Overcoming these issues is vital for enhancing UAV-based tracking 

systems, which are increasingly applied in military, civilian, and environmental sectors. Tackling these issues will 

help improve the efficiency and reliability of UAV systems, making them more effective in dynamic, real-world 
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scenarios. 

The primary objective of this paper is to review advanced techniques and algorithms for UAV-based moving 

target tracking, addressing significant challenges in the field. This involves three methods: target information 

prediction, target information tracking and swarm cooperation strategy. The significance of this research extends 

across multiple domains. In the military sector, enhanced tracking precision and reliability are crucial for 

improving operational effectiveness and decision-making in both offensive and defensive scenarios. In the civilian 

sphere, advanced UAV-based tracking systems can enhance traffic management efficiency, reduce congestion, and 

improve road safety. Furthermore, during disasters, these systems aid in locating and rescuing survivors. In 

wildlife protection, they provide valuable data for understanding animal behavior and promoting habitat 

conservation. This paper has the potential to drive innovation in industries reliant on UAV-based moving target 

tracking. 

 

2. Status of target information prediction method 

Accurate prediction of a target's future position is essential for efficient and stable UAV target tracking. The 

prediction module is crucial as it infers future positions from historical motion data, guiding the UAV's trajectory 

and minimizing delay and tracking bias. In real-world scenarios, target movement patterns can be complex and 

variable, especially with nonlinear trajectories like those of crowds and vehicles, necessitating reliable prediction 

methods. 

As illustrated in Fig. 2(a), the vehicle moves along a nonlinear trajectory with variable speed, making it easy 

for the UAV to lose track of the target2. As shown in Fig. 2(b), it is illustrated that individuals become obscured by 

trees in their environment, resulting in the failure of UAV tracking systems due to the loss of target visibility. The 

primary issue arises from the UAV’s inability to maintain continuous information about the target. To address this 

challenge, it is essential to develop a reliable method for target prediction, which ensures the accurate acquisition 

of target information. 

 

 

Fig. 2. UAV-based tracking of moving targets cases: (a) A UAV tracks a ground vehicle which can move around at 

                                                             

2 The source information for Fig. 2(a) is as follows:  

https://engineering.purdue.edu/Engr/AboutUs/News/Spotlights/2022/2022-0613-uav-competition 
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will; (b) A UAV is tracking an individual who is partially hidden by trees. 

 

Currently, three main types of prediction strategies are widely employed: filter-based algorithms, deep 

learning-based algorithms, and regression-based algorithms. These methods capture the dynamic characteristics of 

targets to varying degrees, enhancing the UAV’s tracking capabilities. By reducing deviations caused by rapid 

movements or sudden turns, they enable the UAV to adjust its path more smoothly, ensuring efficient and accurate 

tracking. 

2.1. Filtering-based algorithms 

Filtering-based algorithms are extensively employed in applications like target tracking, navigation, and 

signal processing due to their ability to dynamically estimate a target’s true state [23–28]. These algorithms utilize 

statistical methods to integrate historical observation data with prior system information. The core principle of 

filtering-based algorithms is the establishment of a prediction-update cycle. Initially, the algorithm predicts the 

system’s next state, then updates the current state estimate using new observations. This strategy effectively 

reduces the impact of uncertainties, including sensor noise and environmental interference. 

Some studies combine filtering algorithms, such as Kalman filtering (KF), Extended Kalman filtering (EKF), 

and Unscented Kalman filtering (UKF), with other methods to predict the future motion states of targets. By 

integrating these prediction techniques with additional algorithms, researchers aim to improve the accuracy and 

robustness of target tracking and motion forecasting. In a related study, Zhao et al. [29] utilized KCF to track 

targets, identifying the pixel position of vehicles in each video frame. They introduced a passive geolocation 

method to compute the GPS coordinates of moving vehicles. Cheng et al. [30] utilized the You Only Look Once 

(YOLO) method to detect the moving target by defining it as a bounding box. They then employed the UKF 

technique to forecast the target’s motion and subsequently tracked the target based on the estimated velocity. 

Bonatti et al. [31] integrated MobileNet [32] and Faster-RCNN [33] to enhance object detection capabilities. They 

utilized linear Kalman filtering to predict the target’s motion state. Farahi et al. [34] introduced the Probabilistic 

Kalman Filter (PKF) algorithm, which examines the constructed probability graph to identify targets exhibiting 

unconventional behaviors. Hui et al. [35] proposed an RGB-D camera-based segmentation method to detect and 

locate the target, and used EKF to predict the target’s motion state within a limited time frame. Similarly, Lin [36] 

employed the EKF to estimate the state of a moving target in visual inspection. Liu et al. [37] employed Deep 

Neural Networks (DNN) and kernelized correlation filters (KCF) for target recognition and localization within the 

pixel coordinate system using vision-based techniques. By integrating laser ranging data with an image-based 

distance estimation algorithm, they accurately determined the distance between the UAV and the target. 

Several studies have focused on the development and improvement of filtering algorithms to address specific 

challenges in UAV target tracking. These advancements aim to enhance the accuracy and robustness of tracking 

systems in dynamic and complex environments. By refining traditional filtering techniques, researchers have 
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proposed new algorithms that effectively mitigate noise, handle target appearance variations, and account for 

environmental disturbances, thereby improving the overall performance of UAV tracking. Gulay [38] introduced a 

KF approach specifically designed for collision avoidance and target tracking in autonomous aircraft. This method 

leverages motion-based tracking to effectively monitor multiple objects simultaneously. To detect moving objects, 

a background subtraction algorithm was employed, which is crucial for distinguishing these objects from their 

surroundings. Subsequently, corrective actions were implemented to minimize noise and accurately identify 

connected pixel groups that correspond to the detected objects. Deng et al. [39] developed an online tracking 

algorithm centered on discriminative correlation filter. This algorithm utilizes the alternating direction method of 

multipliers to simultaneously learn spatial and temporal regularization terms. This approach effectively mitigates 

environmental disturbances and leverages historical data to create a robust target appearance model. Li et al. [40] 

drew inspiration from keyframe simultaneous localization and mapping to propose a Keyfilter-Aware Object 

Tracker (KAOT) filter tailored for UAV tracking of targets. This filter intermittently learns context at a specific 

frequency and imposes a time constraint to prevent filter corruption over time, effectively reducing contextual 

noise. Fig. 3 presents the qualitative tracking results of KAOT in comparison to other excellent trackers across five 

challenging UAV image sequences. Lin et al. [41] developed a Bidirectional Incongruity-aware Correlation Filter 

(BiCF) aimed at enhancing UAV tracking capabilities. This innovative scheme addresses the challenges of 

appearance changes and inconsistent errors by incorporating response-based bidirectional incongruity errors. As 

depicted in Fig. 4, BiCF constructs these errors by leveraging sample information and filters from the previous 

frame, thereby optimizing the utilization of inter-frame information. This method stands in contrast to the 

traditional Discriminative Correlation Filter (DCF), which relies exclusively on samples from the current frame, 

making it more susceptible to appearance changes. Addressing the diversity and mobility of targets, Liu et al. [10] 

applied a single shot multiBox detector (SSD) algorithm to generate multiple candidate targets. They then 

employed a support vector machine-based method for target screening to identify the correct target. Furthermore, 

they developed the TLD-KCF tracker, which incorporates a conditional scale adaptive algorithm to improve the 

tracking performance of quadrotor UAVs in complex outdoor environments. Yeom [42] developed a method to 

track targets using an infrared thermal camera mounted on a UAV. This method employs two-point differencing 

initialization and either a Kalman filter or an interacting multiple model filter. 
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Fig. 3. Qualitative evaluation results in Ref. [40]. From top to bottom, they are respectively the sequences Chasing 

Drones, RcCar6, SnowBoarding2, Gull1, and wakeboard2. 

 

 

Fig. 4. Comparison of DCF and the designed BiCF tracker [41]. 

 

In summary, filtering algorithms play a crucial role in target information prediction, offering both significant 

advantages and notable disadvantages. These algorithms excel in real-time state estimation by efficiently 

integrating historical data with prior information, which helps to mitigate the impact of sensor noise and 

environmental disturbances. Their predictive capabilities allow for continuous updates, making them particularly 

suitable for applications that require dynamic tracking, such as in surveillance or inspection tasks, where the 

environment is less dynamic and the target’s behavior is relatively stable. However, in more complex, dynamic 

environments, filtering-based algorithms face limitations. When targets exhibit erratic or non-linear motion, or 

when they are temporarily occluded, traditional filtering methods may struggle to maintain accurate tracking. In 

such cases, their reliance on predefined motion models can lead to tracking inaccuracies. To address these 
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challenges, future research could focus on improving these algorithms’ adaptability, enabling them to better handle 

sudden changes in target behavior, occlusions, or environmental disturbances. Additionally, incorporating machine 

learning and deep learning techniques could enhance their ability to model non-linear movements and appearance 

variations. Hybrid approaches that combine filtering with advanced object detection and tracking methods, such as 

convolutional neural networks (CNNs) or deep reinforcement learning (DRL), could further improve the 

robustness and accuracy of UAV-based tracking systems in unpredictable environments. Overall, while filtering 

methods are powerful tools for target tracking, their performance is highly dependent on the specific dynamics and 

context of the target. 

2.2. Deep learning-based algorithms 

The deep learning-based target prediction algorithm utilizes the robust feature learning capabilities of neural 

networks to improve the accuracy of target state predictions by automatically extracting valuable information from 

extensive datasets [43–45]. In object tracking tasks, these algorithms are trained on historical trajectory data to 

identify movement patterns and behavioral characteristics, thereby facilitating effective predictions in complex 

environments. To capture dynamic features and environmental information of the target, deep learning 

architectures such as long short-term memory networks (LSTMs), convolutional neural networks (CNNs), and 

graph neural networks (GNNs) are frequently employed [46–48]. To accurately describe the behavioral 

characteristics of the target, researchers must first collect extensive trajectory data. This data is then used to train 

model parameters through various methods, such as interacting multiple models (IMM) [49], Gaussian mixture 

models (GMM) [50], and hidden Markov models (HMM) [51]. Once the model is adequately trained, it can be 

employed to predict the target’s trajectory effectively. 

Deep learning methods are increasingly being applied to improve the accuracy of target trajectory prediction 

and tracking performance. These approaches leverage the powerful feature extraction capabilities of neural 

networks to address challenges such as trajectory forecasting, aspect ratio changes, and environmental factors like 

low-light conditions. Alahi et al. [52] regarded the problem of trajectory prediction as a problem of position 

sequence generation, and employed the LTSM method to build a prediction model that can encode the observed 

target trajectory and generate the target’s future trajectory. Zhang et al. [53] introduced a coarse-to-fine deep 

learning framework aimed at addressing the aspect ratio change challenge in vision-based aerial tracking. This 

framework is bifurcated into two distinct components: coarse trackers, which are tasked with generating initial 

estimates for the target object and managing the movement and scale changes of the bounding box as a whole; and 

fine trackers, which concentrate on the refinement of the bounding box boundaries. The fine trackers learn a 

sequence of actions designed to meticulously adjust the four edges of the bounding box. These two tracker 

components are collaboratively trained by leveraging a shared perception network within an end-to-end 

reinforcement learning architecture. Ye et al. [54] introduced a low-light image intensifier designed to alleviate the 

impact of illumination and ambient noise on target tracking. This approach leverages a lightweight map estimation 
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network, ME-Net, which is adept at jointly estimating both the light map and the noise map, thereby enhancing 

tracking performance under challenging lighting conditions. Fig. 5 shows some tracking screenshots of the trackers 

with DarkLighter enabled or not, DarkLighter raises the tracking reliability of the trackers in these low-light scenes. 

Wang et al. [55] presented a UAV tracking method that capitalizes on manual features within a filtered tracking 

framework. In this method, a peak signal-to-noise ratio (PSR) stability metric is employed to assess the quality of 

tracking results and to determine the fusion weights. This strategy significantly bolsters the robustness of the 

tracking process. 

 

Fig. 5. Some qualitative evaluation results of trackers when DarkLighter is enabled (represented by solid line 

boxes) or not (indicated by dashed line boxes) presented in [54]. From top to bottom, the sequences are 

pedestrian3, person12 2, and person12 3 from UAVDark135. In the absence of DarkLighter’s assistance, the 

involved trackers are unable to maintain robust tracking under these low-light conditions. 

 

Researchers have been combining deep learning models with traditional tracking algorithms to enhance the 

robustness and accuracy of object tracking systems. These hybrid approaches integrate methods like CNNs and 

novel loss functions to optimize tracking in complex environments, including dynamic obstacle detection and 

ground target tracking. Panetsos et al. [56] integrated a CNN with a KCF tracker to achieve uninterrupted detection 

of ground targets. Their approach harnesses the strengths of both CNNs and KCF to maintain a high level of 

tracking accuracy. Zhou et al. [57] proposed a dynamic obstacle position estimation method that utilizes 

learning-based MDE (Monocular Depth Estimation) and a monocular camera. This method addresses the scale 

ambiguity problem by integrating object detection and height-based depth estimation algorithms, thereby 

enhancing the accuracy of the estimation. Building upon the SiamCAR framework [58], Jin et al. [59] developed 

the RB-SiamCAR tracker. This tracker employs a ranking-based filter pruning technique and introduces a 

classification sorting loss and an IoU-guided sorting loss. These losses, in conjunction with the ECA (Efficient 

Channel Attention) module, facilitate the consistent optimization of both classification and positioning tasks. The 
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result is a tracker that offers improved accuracy and robustness in target tracking. Giusti et al. [60] studied the 

problem of perceiving forest or mountain trails from a single monocular image, proposing a different approach 

based on a deep neural network used as a supervised image classifier. By operating on the whole image at once, 

their system outputs the main direction of the trail compared to the viewing direction, bypassing the challenging 

problem of determining trail characteristics. Paul et al. [61] proposed Siam R-CNN, a Siamese re-detection 

architecture that uses convolutional neural networks to model the appearance of objects, and combines it with a 

novel tracklet-based dynamic programming algorithm to track objects through re-detection. As shown in Fig. 6, the 

framework primarily consists of two simple sub-networks: a Siamese network for feature extraction and a 

classification and regression network for bounding box prediction. 

 

Fig. 6. Ranking-based SiamCAR framework of Ref. [61]. 

 

In summary, deep learning-based target prediction algorithms leverage the robust feature extraction 

capabilities of neural networks to enhance prediction accuracy by automatically extracting information from large 

datasets. These algorithms effectively capture dynamic features and environmental information through 

architectures such as LSTM, CNN, and GNN. By training on historical trajectory data, they learn complex motion 

patterns and behavioral characteristics, which enables accurate predictions even in challenging environments. 

Furthermore, advancements such as end-to-end reinforcement learning frameworks and lightweight networks 

enhance their robustness and adaptability. However, these deep learning methods typically require extensive data 

collection and training to optimize model parameters, a process that can be resource-intensive. They are also 

susceptible to overfitting, especially in situations with limited data diversity. Additionally, their dependence on 

large computational resources may hinder real-time implementation, and their performance can degrade in 

scenarios involving rapid changes or unexpected target behaviors. 

To address these limitations, future advancements could incorporate emerging technologies such as edge 
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computing, which would allow for faster data processing and real-time decision-making without the need for 

powerful centralized servers. Additionally, the integration of advanced multi-modal sensing technologies, like 

LiDAR or 3D vision, could improve robustness in tracking under difficult environmental conditions. Moreover, 

newer model optimization techniques, such as lightweight neural networks or the use of neuromorphic computing, 

could further enhance the speed and adaptability of deep learning-based trackers, making them more effective in 

real-world applications. Overall, while deep learning algorithms show significant promise for target prediction, 

their effectiveness is contingent upon data quality, model training, and computational capacity. 

2.3. Regression-based algorithms 

Regression-based target prediction algorithms aim to forecast a target’s future location by constructing a 

mathematical model based on historical data. These algorithms typically utilize methods such as linear or 

polynomial regression to establish a relationship between time and location, drawing on the target’s positional 

information at various time points. A key strength of the regression model lies in its ability to effectively capture 

movement trends, thereby facilitating accurate position predictions. The implementation process places significant 

emphasis on feature engineering, where the model’s predictive capabilities are often enhanced by extracting 

dynamic features like velocity and acceleration. Despite their relative simplicity and lower computational demands, 

regression algorithms may struggle with complex motion patterns and noisy environments, where deep learning 

methods often excel. However, in scenarios characterized by linear or straightforward motion patterns, 

regression-based algorithms can still deliver precise and efficient predictions. Consequently, they are widely 

applied in fields such as target tracking and motion analysis. 

Several studies in target trajectory prediction utilize analytical and polynomial approaches to model and 

forecast the motion of targets. These methods rely on historical data and dynamic constraints, with some models 

addressing uncertainties, collision avoidance, and smoothness in the target’s future trajectory. Cui et al. [62] used 

Bernstein basis polynomials, considering the distribution of obstacles around the target, to predict the target’s 

future movement, assuming it aims to avoid obstacles. Wang et al. [63] utilized polynomial trajectories to 

approximate historical path-points to forecast the future trajectory of the target over time. Then, the initial tracking 

trajectory is generated as which is topologically equivalent to the target prediction trajectory, and the b-spline is 

employed to represent the tracking trajectory while taking into account the smoothness, collision and dynamic 

feasibility. Li et al. [64] employed observational regression based polynomial values to extend the polynomials to 

future times to rapidly predict the future motion of the target after obtaining the observed values for the target. 

Considering the effects of observation errors and noise, the predicted target trajectory might intersect with the 

position of the obstacle. To avoid the above situation, the target trajectory is corrected through using the 

breadth-first search (BFS) method to guarantee that the modified target trajectory is safe. Lee et al. [65] considered 

the UAV camera sensor, position, velocity and covariance of its estimation error, and also the size (radius) of the 

moving object, observed the current information of the target, employed the Bernstein polynomial to represent the 

Jo
urn

al 
Pre-

pro
of



target trajectory, and forecasted the possible trajectory of the target in the future time by solving the unconstrained 

quadratic programming (QP) problem, and acquired the fast reachable set of the target. Chen et al. [66] assumed 

the target motion was smooth, employed Taylor expansion to represent the target trajectory, and formulated the 

prediction problem as an unconstrained QP problem to determine the target trajectory in the future short time. Ji et 

al. [67] employed EKF to process the current position of the target, represented the target trajectory as a Bezier 

regression polynomial, and employed the hybrid A* algorithm to determine the target trajectory in the next short 

time. Pan et al. [68,69] utilized polynomials to approximate the target motion, and employed the Bernstein-based 

polynomial (Bézier curve) to enhance the dynamic constraints, and combined with the historical information of the 

target to predict the target motion. 

Other research explores the integration of environmental factors and dynamic behaviors into target prediction. 

Techniques like A* path planning, visibility measures, and regression-based models consider obstacles, 

interactions, and the movement context of the target to enhance the prediction accuracy in real-world scenarios. 

Vasishta et al. [70] employed sociological principles and the sociological concept of Natural Vision to model 

sidewalks, buildings, and vehicles, established a function of the built environment where pedestrian behavior is 

located in urban areas, and constructed a potential field cost map. Then utilized the A* algorithm [71] to plan the 

trajectory of the target in the potential field cost map, and took the planning results as the predicted trajectory of 

the target. Yi et al. [72] proposed a pedestrian prediction approach, which employs the stationary crowd group as a 

key component to simulate pedestrian behavior, studies pedestrian behavior by inferring the interaction between 

the stationary crowd and the pedestrian, models the impact of the target and obstacles on the target trajectory as 

energy, and plans the trajectory of the target via the fast marching method to fulfill the purpose of prediction (Four 

examples are presented in Fig. 7). The above prediction methods assume that the movement trajectory of 

pedestrians is optimal. But in the real world, the movement mode of the moving target is uncertain, and it cannot 

be guaranteed that the trajectory is optimal at all times. Thus, the above method is inaccurate and has deviations. 

Khan et al. [73] tackled the challenge of low-complexity target tracking using flying robots by employing a 

cover-set coverage method. This method involves clustering moving targets and estimating the camera locations 

and orientations for each cluster. To enhance the efficiency of their algorithm, they leveraged partial knowledge of 

target mobility. Consequently, they developed three computationally efficient approaches: predictive fuzzy, 

predictive incremental fuzzy, and local incremental fuzzy. The primary objective of these approaches is to balance 

coverage efficiency, the distance traveled, the number of UAVs used, and computational complexity. Jeon et al. 

[74,75] employed a visibility measure reflecting the Euclidean signed distance functions to obtain a series of 

security view points. Then, in the subsequent modules, the viewpoints are smoothly interpolated by using quadratic 

programming, but this scheme fails to guarantee the visibility of the target as it moves between viewpoints, and the 

computational burden is significant. 
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Fig. 7. Four examples of pedestrian destination prediction in Ref. [72]. 

 

The performance comparison of different target information prediction methods is summarized in Table 1. 

Here, Benchmark refers to the UAV tracking benchmarks used by each method, Precision indicates the accuracy of 

the target position prediction, area under the cure (AUC) measures the success rate of the tracking algorithm, and 

FPS represents the processing speed in terms of frames per second, NC stands for missing data for this method. 

When making the comparison, studies with unclear datasets or those using proprietary datasets were excluded. 

 

Table 1 

Performance comparison of different target information prediction methods. 

Ref. Benchmark Precision AUC FPS 

[39] UAV123 65.9 48.8 NC 

[40] UAV123 68.6 47.9 14.69 

[41] UAVDT 71.6 45.7 50.2 

[53] 

[54] 

[55] 

[59] 

[61] 

UAV123 

UAVDark135 

UACDark135 

UAV123 

UAV123 

65.1 

70.0 

71.6 

83.5 

83.4 

45.21 

54.4 

50.1 

64.0 

64.9 

NC 

NC 

NC 

25 

25 

 

In summary, regression-based target prediction algorithms offer a straightforward and effective approach for 

predicting future positions by utilizing methods such as linear or polynomial regression to model the relationship 

between time and position. These algorithms are computationally efficient, making them ideal for scenarios with 

linear or simple motion patterns and applications requiring quick and lightweight calculations. They excel at 

capturing movement trends over time, particularly when integrated with features like velocity and acceleration, 

and are commonly used in UAV tracking and sports analysis. However, regression methods face limitations in 

handling complex or nonlinear motion patterns and may struggle in high-noise environments, lacking the 

robustness of deep learning models. Additionally, they often require trajectory correction methods, such as BFS or 
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A* algorithms, to avoid collisions or account for obstacles, which adds complexity. Consequently, while 

regression-based methods provide accurate and efficient predictions in simpler scenarios, their effectiveness 

diminishes in dynamic or unpredictable environments. The introduction of emerging technologies, such as more 

sophisticated sensor systems, edge computing for faster data processing, and advanced multi-modal tracking, could 

enhance the robustness and accuracy of regression-based algorithms, making them more adaptable to complex, 

real-time tracking challenges. 

3. Status of target information tracking method 

Tracking target information through UAVs is a pivotal technology for achieving autonomous flight and 

efficient monitoring, with research advancements primarily categorized into three approaches: control-based, 

planning-based, and deep learning-based strategies. The control-based strategy prioritizes real-time feedback and 

dynamic adjustments, enabling UAVs to flexibly respond to changes in the target. In contrast, the planning-based 

strategy focuses on designing optimal flight paths by utilizing environmental information and target characteristics 

to develop effective navigation strategies. Meanwhile, the reinforcement learning-based strategy leverages 

data-driven models, utilizing neural networks to learn optimal decision-making strategies through interaction with 

the environment and reward feedback, thereby significantly enhancing the accuracy and adaptability of tracking. 

As technology advances, the potential applications of these strategies in complex environments are continually 

expanding, providing innovative solutions to improve the target tracking capabilities of UAVs. 

3.1. Control-based strategy 

The control-based strategy effectively enables UAVs to track targets by utilizing real-time feedback and 

dynamic adjustments. This approach typically involves the use of closed-loop control systems, which rely on 

real-time sensor data to continuously update the UAVs’ status, including parameters such as heading, speed, and 

altitude. 

Several UAV control strategies utilize dynamic models and optimization techniques to enhance target tracking 

performance. These methods often incorporate predictive models that forecast the target’s future trajectory, and 

optimization algorithms that adjust the UAV’s path to minimize tracking errors and maximize efficiency. By 

considering the system dynamics and constraints, these methods aim to provide precise control over the UAV’s 

movement in complex scenarios. According to the sliding mode control theory, Wang et al. [76] put forward a 

continuous time and discrete-time distributed formation tracking protocol based on adjacent relative information, 

and employed the Lyapunov stability method to provide sufficient conditions for multi-UAV systems to achieve 

expected formation tracking, and presented the quasi-sliding mode domain width of the discrete-time protocol. 

Panetsos et al. [56] employed the nonlinear model predictive control (NMPC) method to take into consideration 

the nonlinear dynamics of the UAV system, and incorporated the future trajectory of the target into the prediction 

range of the NMPC, and produced an appropriate reference for the autopilot’s internal attitude control loop for 

minimizing the tracking error between the target and the target. Naxgeli et al. [77] put forward a method for 
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real-time control of UAVs equipped with gimbals, which automatically solves out UAV trajectories and gimbal 

control with target prediction position as input. It employs a real-time retreat horizon planner to automatically 

record the scene with moving targets, while optimizing the visibility under occlusion and guaranteeing a 

collision-free trajectory, and sets up the cost minimization problem under constraints as a finite horizon MPC 

optimal problem and solves it in real-time. 

 

Some control approaches focus on real-time sensor feedback without relying on explicit system models. 

These methods employ adaptive algorithms that adjust the UAV’s behavior based on continuous sensor inputs, 

such as vision or position data, to track the target effectively. This model-free approach offers robustness, 

particularly in unpredictable environments where traditional model-based methods might struggle. Li et al. [78] 

devised a control law employing estimated variables for small UAVs fitted with gimbal cameras, which is capable 

of driving the range to the desired value by merely controlling the UAV turning rate without employing the range 

value as feedback for static and moving targets having constant velocity. Zhao et al. [79] put forward a yaw 

compensator module, which combined with the help of the image information of the target for adjusting the yaw of 

the UAV, and finally employed the model prediction controller (MPC) for obtaining the optimal speed of the UAV 

taking trajectory and yaw as inputs. Boudjit et al. [80] proposed a target tracking control law using a fuzzy logic 

controller that processes camera data. The algorithm is designed with minimal input parameters, reducing 

computational power requirements. Kendall et al. [81] relied solely on low-frequency target image information, 

and employed a Kalman filter to mitigate the excessive noise from the measurement range of the object’s pixel 

area, and finally achieved the control of the target tracking by UAVs via a parallel proportional integral derivative 

(PID) controller (see Fig. 8). Then, Rabah et al. [82] developed a Fuzzy-PI controller that adjusts the parameters of 

a PI controller based on position and velocity data to improve target tracking in quadcopters. 

 

Fig. 8. Object tracking control system structure in Ref. [81]. 
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In summary, control-based strategies for target tracking utilize real-time feedback and dynamic adjustments, 

enabling UAVs to effectively follow their targets. These algorithms rely on closed-loop control systems that 

continuously update the UAV’s state based on sensor data, facilitating precise modifications in heading, speed, and 

altitude. Techniques such as sliding mode control, NMPC, and PID control are particularly effective in managing 

the UAV’s trajectory and minimizing tracking errors. These methods can adapt to changing conditions and provide 

robust performance across various operational scenarios, making them well-suited for real-time applications. 

However, control-based strategies can be sensitive to model inaccuracies and disturbances, potentially leading to 

instability if the system dynamics are not accurately represented. Additionally, achieving optimal performance may 

require complex tuning and calibration, which can be time-consuming. In environments with high noise levels or 

unpredictable target behavior, the dependence on real-time feedback might introduce delays that compromise 

tracking accuracy. Therefore, while control algorithms are powerful tools for target tracking, their effectiveness is 

contingent upon the accuracy of the models employed and the quality of the sensor data. 

3.2. Planning-based strategy 

The planning-based strategy in UAV target tracking focuses on determining the optimal flight path to ensure 

efficient and precise monitoring [10,83,84]. By analyzing environmental characteristics, target behavior, and 

mission requirements, these methods generate adaptable flight plans. A critical aspect of this approach is the 

consideration of obstacles and flight constraints, which is essential for maintaining the safety and efficiency of the 

UAV during its mission. Furthermore, advancements in sensor technology and computing power have enhanced 

these methods, allowing for real-time path updates. This capability enables UAVs to respond flexibly to 

dynamically changing targets, thereby improving tracking accuracy and stability. 

Trajectory optimization and path planning methods have been extensively explored to improve UAV target 

tracking. Several studies focus on optimization-based approaches, where the trajectory is represented using 

mathematical functions like Bézier curves or other approximations. These methods aim to minimize tracking errors, 

control costs, and ensure safety. Lin et al. [36] characterized the object tracking problem as an optimization-based 

trajectory generation, and suggested that the trajectory be represented as a Bézier curve using the Bernstein 

polynomial basis, and the weighting and cost functions jointly penalize the tracking error, the control cost of the 

trajectory, and the trajectory length, while imposing safety and feasibility constraints. Masnavi et al. [85] put 

forward for the first time a multi-convex approximation for trajectory optimization related to target tracking issues. 

It breaks down trajectory optimization into three smaller parts: a convex quadratic programming and two parallel 

univariate optimizations which can be solved in closed form. Zhou et al. [57] put forward a spatiotemporal motion 

planning method on the basis of safe corridors to generate safe and efficient spatiotemporal trajectories. This 

method can not only handle the uncertain motion of the obstacle, but also effectively respond to the change in the 

velocity of the dynamic obstacle by predicting the trajectory on the basis of the past motion and predicting its 

motion uncertainty accordingly. 
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Some methods integrate graph-based or sampling-based techniques for efficient path generation. Li et al. [64] 

employed a sampling-based search algorithm under target constraints to search for the path based on calculating 

the future trajectory of the target. The latter part utilizes flight corridors to constrain and optimize the trajectory. 

Jeon et al. [86] focused on enhancing target visibility by proposing an efficient trajectory generation method for 

chasing a dynamic target, emphasizing color detectability against the background. They defined a measure of color 

detectability and optimized a discrete path, which was then transformed into a dynamically feasible trajectory 

capable of real-time adaptation to the target’s movement. Utilizing a directed acyclic graph (DAG) for efficient 

path generation, they ensured smooth trajectories through QP. Cai et al. [87] put forward a tracking algorithm that 

incorporates target state estimation into the UAV tracking path, which is a path planning strategy based on the 

improved A* algorithm, to address the issue that the traditional tracking algorithm cannot quickly track the target 

and the tracking efficiency is not high. To deal with the loss of the target, Zou et al. [88] put forward a proposal to 

determine the flight direction of the lost target by visual direction. First, the projection sphere of the obstacle in the 

center of the target position is created. Second, the sample method is employed to determine the point indicating 

the visual direction of the spherical surface of the object. Additionally, a trajectory generation strategy was devised 

to deal with the occlusion. Imitates an attractive force from the visual direction, thereby pushing the control point 

closer to the point by means of introducing a direction penalty term that penalizes the curve for deviating from the 

visual direction. Wang et al. [89] introduced a comprehensive metric for target visibility that incorporates factors 

such as observation distance, angle, and occlusion effects. This metric was formulated into a differentiable 

visibility cost function, facilitating the joint optimization of spatial trajectory and yaw while maintaining dynamic 

feasibility. 

 

Visibility plays a crucial role in UAV target tracking, especially in environments where occlusions may affect 

the tracking process. Several studies have focused on optimizing UAV trajectories to enhance visibility and prevent 

occlusions. Lee et al. [65] focused on the target visible area to improve the visibility of both single and dual targets 

in both static and dynamic settings. By considering the set of reachable targets and obstacles, their proposed 

planner generates a target visible trajectory through the formulation and solution of a quadratic programming 

problem. Hui et al. [35] addressed the trade-off between target visibility and security in trajectory optimization. 

They utilized Model Predictive Path Integral (MPPI) to solve the nonlinear trajectory optimization problem, 

resulting in an efficient tracking trajectory that ensures full efficiency. Occlusion-aware trajectory generation is 

another critical area of research, where methods are developed to avoid scenarios where the target might be 

obstructed by obstacles in the environment. Penin et al. [90] explored online optimal trajectory generation for 

quadrotor target tracking, addressing image-based and actuation constraints. Their research concentrated on a 

camera-equipped quadrotor that must smoothly follow a moving target while avoiding obstacles and image 

occlusions. They proposed a multi-objective optimization strategy with occlusion constraints and an online 

replanning method based on MPC. This approach was formulated as a nonlinear program (NLP) using differential 
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flatness and B-Splines, allowing for resolution via sequential quadratic programming (SQP) at 30 Hz. Fig. 9 

depicts target visibility for different algorithms, shown as the distribution of target positions relative to the tracking 

quadrotor on the x-y plane. The red part represents the field of view of the drone. 

 

Fig. 9. Comparison with Ref. [69] and Ref. [89] on target visibility in Ref. [67]. 

Real-time control methods are essential for adapting to dynamic targets with changing velocities and 

unpredictable movements. Some approaches focus on adjusting the UAV’s trajectory to synchronize with the 

dynamic perching surface of the target. Gao et al. [91] introduced a versatile terminal adjustment method designed 

to accommodate variations in flight time and to synchronize with the dynamic perching surface of the target at 

various angles. This method optimizes the tangential relative velocity and employs a relaxation strategy to address 

the dynamics and safety issues arising from rigid boundary conditions. In real world experiments, UAV 

successfully tracks and perches at 30 km/h (8.3 m/ s) on the top of the sports utility vehicle (SUV), and at 3.5 m/s 

with 60° inclined into the trunk of the SUV. Li et al. [92] proposed a dynamic window approach local path 

planning algorithm tailored for dynamic target tracking tasks. This algorithm adaptively adjusts the yaw angle of 

the UAV to keep the tracking target centered in the camera image, thereby achieving precise tracking and path 

planning. In addition to dynamic adjustment, path planning methods like the dynamic window approach allow for 

adaptive changes in the UAV’s flight path based on the target’s movement. Liu et al. [10] presented a novel path 

planning algorithm based on an elliptical tangent model. This approach enables feasible path planning without the 

requirement for map building, offering a flexible solution for various navigation scenarios. 

Certain UAV trajectory optimization methods are tailored for specific applications, focusing on challenges 

unique to those domains. Bonatti et al. [93] developed a method for autonomous aerial cinematography that 

prioritizes the capture of aesthetically pleasing videos without human intervention. Their approach stands out by 

balancing shot smoothness, occlusion, and cinematography guidelines in real time, unlike existing methods that 

depend on offline trajectory generation or short-term planning with simplistic obstacle representations. They 

achieved this through an innovative algorithm for real-time covariant gradient descent, optimizing trajectories 

based on multiple cost functions. Han et al. [69] presented a perceptual trajectory optimization method for security 

visibility guidance in aerial tracking, which is capable of simultaneously handling occlusion and collision in 

complex environments (The detailed structure is shown in Fig. 10). It sets up a new view-based metric field to 
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prevent targets from being occluded by obstacles. Based on this, the complexity of the environment is introduced 

so as to adjust the relative distance between the quadcopter and the target to further lower the occlusion probability. 

Next, a critical relative angle is put forward to strengthen the obstacle perception in the direction of quadrotor 

motion. Additionally, a time optimization method is presented to enhance the smoothness of quadrotor flight. 

 

Fig. 10. Description of the fast-tracker system structure in Ref. [69]. 

 

In summary, planning-based algorithms for UAV target tracking focus on devising optimal flight paths to 

ensure efficient and precise monitoring of targets. These methods excel in generating adaptive flight plans by 

analyzing environmental features, target behavior, and mission requirements. By considering obstacles and flight 

restrictions, they ensure both safety and efficiency during mission execution. Advances in sensor technology and 

computational power have enabled these algorithms to provide real-time path updates, allowing UAVs to respond 

swiftly to dynamic changes in target positions, thereby enhancing tracking accuracy and stability. However, these 

planning methods can be computationally intensive, particularly in complex environments with numerous 

obstacles and dynamic elements. The necessity for detailed environmental modeling can also introduce delays in 

path planning, potentially affecting real-time performance. Additionally, these algorithms may struggle in highly 

unpredictable scenarios where target behavior is erratic or rapid adjustments are required. Consequently, while 

planning-based methods offer robust solutions for target tracking, their effectiveness may be limited by 

computational demands and environmental complexity. 

3.3. Reinforcement learning-based strategy 

Reinforcement learning (RL) strategies for target tracking by UAVs enhance decision-making capabilities in 

dynamic environments through an iterative process of trial and error. UAVs continuously interact with their 

surroundings, refining their tracking strategies by receiving rewards or penalties that provide performance 

feedback. By defining a reward function that includes key objectives-such as maintaining an optimal distance from 

the target, minimizing energy consumption, and maximizing tracking accuracy-UAVs can autonomously discover 

effective tracking policies. These RL approaches enable UAVs to adapt dynamically to fluctuations in target 

behavior and environmental conditions, making them highly suitable for complex and unpredictable scenarios. 

Consequently, these strategies have demonstrated significant potential in improving the adaptability and efficiency 

of UAVs in target tracking missions. Overall, existing research on RL-based strategies can be categorized into two 

main types. 
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Some scholars use RL to conduct research from the planning level. Li et al. [94] put forward an online path 

planning method for UAVs by employing deep RL to enhance maneuvering target tracking and obstacle avoidance. 

They constructed a deep deterministic policy gradient (DDPG) framework, which was enhanced by mixed noises 

in their MN-DDPG method. Additionally, they introduced a task-decomposition algorithm to improve the 

generalization capability of the UAV control model. Xia et al. [95] proposed a cooperative multi-agent 

reinforcement learning scheme. They introduced a propulsion power consumption model and an energy-saving 

strategy to prolong the lifespan of the UAV tracking system. Meanwhile, the use of spatial information entropy 

improved detection coverage. Wang et al. [96] proposed a two-stage deep RL method to improve data utilization 

and learning speed. They created a sample generator that combines artificial potential fields with a traditional 

control scheme for expert experience data. In the first stage, the policy and critic networks are pre-trained with 

expert data. In the second stage, the policy network is guided by the agent’s best experiences based on average 

returns. Li et al. [97] proposed an enhanced DDPG algorithm. They designed a reward function based on line of 

sight and artificial potential fields to guide the UAV’s behavior for target tracking, incorporating a penalty term to 

ensure smooth trajectory generation. Bhagat et al. [98] introduced a deep Q-network (DQN) approach for the 

persistent tracking of a dynamic target. They validated their proposed method through both qualitative and 

quantitative assessments, employing a set of three diverse metrics to evaluate its effectiveness. Wang et al. [99] 

presented an online distributed algorithm for tracking and searching with fleets of UAVs. They addressed the 

challenge of energy replenishment and incorporated a quantum probability model to characterize the partially 

observable positions of targets. Furthermore, they developed an upper confidence bound tree algorithm to identify 

the optimal path, utilizing a teammate learning model to tackle non-stationarity issues in distributed reinforcement 

learning. Seungyeon et al. [100] proposed a framework for target tracking using only a monocular camera. The 

framework comprises two components: a perception module and a planning module. The perception module 

employs a variational autoencoder architecture and a joint objective function across heterogeneous data to extract 

cross-modal representations from RGB input, capturing information from multiple data modalities. The planning 

module leverages latent vectors derived from the pre-trained perception module to generate appropriate 

next-time-step waypoints through imitation learning. Additionally, the planning module integrates temporal 

information of the target to enhance tracking performance through consecutive cross-modal representations. 

Some scholars have explored RL for research from the control level. Ma et al. [101] proposed a RL control 

algorithm to address wind disturbances during tracking. They formulated the problem as a Markov decision 

process with specific system states and reward functions. Najmaddin et al. [102] improved the twin delayed DDPG 

algorithm for reinforcement learning by incorporating a proportional-differential controller, a new reward function, 

and multistage training. These enhancements led to a significant improvement in tracking performance, reducing 

errors by up to 86% for both fixed and moving targets. Zhao et al. [103] introduced a deep RL-based end-to-end 

control method specifically designed for dynamic target tracking using UAVs. This approach effectively addresses 
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the challenges posed by uncertain motion and limited perception capabilities. The framework leverages onboard 

camera images and integrates a neural network with reward functions to enhance the UAV’s ability to perceive 

speed commands. Li et al. [104] introduced the meta twin delayed DDPG, a novel approach that integrates deep RL 

with meta-learning for the control of UAVs. This method is particularly effective in addressing the challenges of 

uncertain target tracking in complex scenarios such as wildlife protection and emergency aid. 

In summary, RL strategies for UAV target tracking provide a robust framework for optimizing 

decision-making in dynamic environments. A key strength of RL is its capacity to learn and adapt through trial and 

error, allowing UAVs to refine their tracking strategies based on real-time feedback from their surroundings. This 

adaptability makes RL particularly suitable for complex and unpredictable scenarios where traditional methods 

may struggle. By defining customized reward functions, UAVs can autonomously discover effective tracking 

policies that prioritize objectives such as maintaining an optimal distance from the target or minimizing energy 

consumption, thereby enhancing tracking accuracy and overall efficiency. However, RL approaches face 

significant challenges, particularly concerning convergence speed and computational demands. Achieving optimal 

performance may require extensive interactions with the environment, resulting in prolonged learning times. 

Furthermore, the effectiveness of RL strategies is heavily reliant on the design of the reward function, which can 

be complex to formulate and may not always yield desired behaviors unless meticulously tuned. Additionally, RL 

methods may struggle in highly dynamic environments where targets rapidly change behavior, necessitating 

continuous retraining or adaptation to sustain performance. As RL algorithms evolve, the incorporation of 

emerging technologies like edge computing further boosts their efficiency. By offloading computation to nearby 

edge servers, RL algorithms can operate with reduced latency and better handle real-time adjustments in target 

tracking. This reduces the computational burden on UAVs, enabling faster decision-making and more responsive 

control, particularly in complex or congested environments. Therefore, while RL offers promising advantages in 

target tracking, it also presents challenges related to training efficiency and environmental variability. 

4. Status of swarm cooperation-based method 

UAVs equipped with cameras provide a dynamic tracking capability that surpasses static cameras or ground 

sensors, but accurately tracking targets with a single UAV is still challenging due to appearance variations and 

occlusions. To overcome these obstacles, Swarm cooperation-based methods leverage swarms of UAVs working 

collaboratively to improve tracking efficiency and accuracy. In this setup, UAVs communicate in real time to share 

information about their positions and target states, creating a unified system capable of dynamic response 

[105–107]. Each UAV can focus on specialized tasks-some may track the target while others monitor the 

environment or plan paths. As shown in Fig. 113, this collaborative strategy not only broadens the surveillance 

range but also enhances the swarm’s adaptability to complex and changing scenarios. As the potential for 

                                                             

3 Fig. 11 is reproduced based on  

https://www.sandboxx.us/news/why-cant-the-us-stop-drone-swarms-from-penetrating-restricted-airspace/ 
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swarm-based approaches grows, they offer promising solutions for effective target tracking in various applications, 

from search and rescue operations to wildlife monitoring. 

 

 

Fig. 11. Multiple UVAs collaborate to expand tracking range. 

 

Effective communication within UAV swarms facilitates real-time data sharing and coordination, while 

efficient task allocation optimizes resource use and enhances mission success rates. Numerous researchers have 

studied this field. Deng et al. [108] investigated energy-efficient task distribution for UAVs by leveraging edge 

computing, which enables the offloading of computation tasks to ground edge nodes rather than relying on cloud 

resources. In their study, they developed a target tracking system that considered both the diverse capabilities of 

ENs and the specific requirements of the tasks. This comprehensive approach facilitated the creation of an 

energy-efficient UAV task distribution algorithm. Wang et al. [76] devised time-varying formation tracking control 

protocols for multi-UAV systems by employing sliding mode control and neighboring information. They 

established stability conditions for successful formation tracking and defined the quasi-sliding mode domain for 

discrete protocols. Upadhyay et al. [109] proposed a collaborative computer vision method for UAV target tracking 

to address performance decline due to GPS signal strength variations. A master UAV is designated based on GPS 

strength or proximity to target, calculating relative positions and adjusting formation flying. Stable tracking is 

achieved via a high-resolution FPV camera, with all UAVs communicating with ground station for data sharing. 

Zhou et al. [110] introduced a RL framework aimed at optimizing both communication and action policies for 

UAV swarms. This approach empowers UAVs to autonomously determine the content of messages based on their 

current status. To achieve this, the researchers employed neural networks for policy approximation, which 

facilitated the derivation of optimization procedures. Consequently, this method allows for the simultaneous 

learning of both communication and action policies, enhancing the autonomy and efficiency of UAV operations. 

Xiao et al. [111] proposed a data-efficient deep RL method specifically designed for collaborative target search 

using visual UAV swarms. This innovative approach effectively addresses the challenges associated with 3-D 

sparse rewards and UAV collaboration. By decomposing the primary task into manageable subtasks, the method 

employs multistage learning to enhance performance. Furthermore, it incorporates an adaptive curriculum that 

dynamically adjusts the difficulty level based on the success rates, thereby optimizing the learning process. 
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Additionally, as shown Fig. 124, compared to a single UAV, UAV swarms can more effectively address 

situations where the target is obscured during tracking, a topic that has garnered significant research interest. In 

order to address the critical challenges of identity association and target occlusion in multi-UAV multi-target 

tracking tasks, Liu et al. [112] put forward the multi-matching identity authentication network based on the 

designed dataset, by employing topological relationships and a local-global matching algorithm to resolve 

cross-UAV associations and enhance tracking of occluded targets. Zhu et al. [113] developed a specific dataset and 

introduced two evaluation metrics: the automatic fusion score and the ideal fusion score. On this basis, they 

proposed the agent sharing network, which improves tracking accuracy by integrating template sharing, target 

re-detection, and view-aware fusion. Li et al. [114] developed a multi-target tracking method for UAV swarms that 

employs self-attentive feature masks and graph convolutional networks to enhance trajectory aggregation and 

target differentiation. Their approach is combined with possibility-based clustering and incorporates a graph 

attention network for optimizing the tracking results in infrared UAVs. Chen et al. [115] introduced the RL 

network that utilizes self-attention for multi-UAV feature fusion and incorporates a cross-UAV mapping 

mechanism to assist UAVs in recalibrating when they lose track of targets. They then constructed a system 

perception index that combines temporal and spatial information to assess the tracking status of multiple UAVs. 

 

Fig. 12. UAV swarms are better able to handle situations where the target is obscured. 

 

Furthermore, as shown in Fig. 13, UAV swarms can also track multiple targets cooperatively. Some 

researchers are focusing on the study of multi-target tracking using UAV swarms. Zhou et al. [116] proposed a 

cooperative tracking architecture for UAV swarms that emphasizes efficient resource scheduling. Central to their 

approach is a Lyapunov-based optimization model, which, along with an energy allocation scheme, aims to 

enhance multi-target tracking capabilities while maximizing flight time. The proposed algorithm improves 

dynamic associations between UAVs and targets, allowing for rapid adaptation to changes in target trajectories. 

                                                             
4 The source information for Fig. 12 is as follows: 

https://www.theverge.com/2022/5/5/23058160/drone-swarm-autonomous-navigation-dense-forest-person-tracking 
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Nagrare et al. [117] introduced a traverse order generation scheme that plays a crucial role in determining the 

sequence in which targets are tracked and in assigning these targets to UAVs. This scheme enables UAVs to 

effectively utilize predicted information about the targets for both path planning and tracking purposes. As the 

targets transition from one region to another, the UAVs are responsible for seamlessly handing off the targets to 

neighboring UAVs, ensuring continuous and efficient tracking. Qamar et al. [118] developed a policy-based deep 

RL framework for UAV swarms, enabling autonomous navigation, multi-target tracking, and obstacle avoidance. 

This framework includes a memory mechanism for optimal path recollection, enhancing navigation and adapting 

to changes in swarm size. 

 

Fig. 13. A UAV swarm are tracking multiple targets. 

 

In summary, the investigation of swarm cooperation-based methods in UAV swarm research highlights 

notable advancements in operational efficiency and coordination. By organizing UAVs into swarms, these methods 

enhance communication and resource allocation, thereby effectively addressing challenges such as target occlusion 

and identity association. Researchers have developed innovative algorithms that employ clustering techniques for 

energy-efficient task distribution, dynamic path planning, and collaborative operations. This approach allows 

UAVs to share information efficiently and respond swiftly to environmental changes. In addition, the integration of 

technologies such as 5G enhances communication speed and reliability, allowing for better coordination, faster 

data transfer, and improved swarm responsiveness in dynamic environments. This makes UAV swarms more 

adaptable and efficient in complex scenarios, contributing to the success of applications like search and rescue, 

wildlife monitoring, and surveillance. Consequently, swarm cooperation-based methods significantly improve the 

reliability and effectiveness of UAV swarm applications across diverse scenarios. 

Table 2 provides a summary and analysis of the primary methods for tracking moving targets by using UAVs, 

highlighting their advantages and disadvantages and citing representative literature. 

 

Table 2 

Summary and analysis of UAV tracking of moving targets. 

Category Strategy Advantages Disadvantages Refs. 

Target prediction 

algorithms 

Filtering Real-time state estimation Model dependency [30–34] 

Noise suppression Occlusion handling 

Jo
urn

al 
Pre-

pro
of



Flexible integration Reduced performance in 

complex environments 

Deep 

learning-based 

Adaptability to dynamic 

environments 

High computational cost [49–53] 

Strong adaptability Real-time implementation 

challenges 

Ability to learn complex motion 

patterns 

Extensive data collection and 

training 

Regression-based Effectiveness in linear motion Poor robustness in noisy 

environments 

[64,70,71, 

74,75,] 

High computational efficiency Dependence on trajectory 

correction 

Effective at tracking movement 

trends 

Struggles with complex motion 

patterns 

Target tracking 

algorithms 

Control-based Real-time feedback and 

dynamic adjustments 

Complex tuning and calibration [76,–79,81] 

Adaptability to dynamic 

environments 

Sensitivity to model errors 

Optimization and predictive 

capabilities 

Reduced tracking accuracy in 

noisy environments 

Planning-based Obstacle and flight constraint 

management 

Path planning delays in complex 

environments 

[10,35,57,64,65] 

Adaptive flight planning Computationally intensive 

Real-time path updates for 

dynamic tracking 

Dependence on environmental 

modeling 

RL-based Self-optimization through 

interaction 

Slow convergence and long 

training times 

[87,98–100] 

Handling uncertainty in 

complex environments 

Dependence on reward function 

design 

Efficient decision-making High computational demands 

Swarm cooperation-based Improved tracking efficiency Vulnerability to interference [108–112,114] 

Cooperative multi-target 

tracking 

Synchronization challenges 

Better robustness Communication issues 

Increased adaptability Complexity in large-scale 

operations 

 

5. Technical challenges and future research 

5.1. Technical challenges 

UAV-based moving target tracking has made significant advancements, yet several technical challenges are 

anticipated as the field evolves. As shown in Fig. 14, this section discusses four critical challenges: target visibility 

and occlusion, real-time prediction and tracking in dynamic environments, flight safety and coordination, resource 

management and energy efficiency. 
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Fig. 14. Technical challenges and future research of UAV-based moving target tracking methods. 

 

5.1.1. Target visibility and occlusion 

The ability to maintain continuous target visibility is a fundamental challenge in dynamic environments, 

where occlusions—such as buildings, trees, or other moving objects—can obstruct the view of the target. This 

often leads to the UAV losing track of the target, making it difficult to update the target’s position and trajectory. 

Occlusions are particularly problematic in environments with dense obstacles or in scenarios where the target may 

be intermittently hidden. When the target becomes partially or fully obscured, tracking systems can experience 

significant delays, resulting in reduced tracking accuracy and, in some cases, total loss of the target. 

As the number of UAVs involved increases, the coordination required to ensure uninterrupted tracking 

becomes more complex. When one UAV loses sight of the target due to occlusion, others must take over the task. 

This requires a seamless sharing of information and real-time communication among the UAVs to ensure smooth 

handover. Communication delays, limited bandwidth, and interference from environmental factors can hinder this 

process, causing misalignment between UAVs or gaps in the target data. The challenge intensifies when the target’s 

behavior changes unexpectedly or when UAVs are not optimally positioned to maintain visibility. 

Overall, ensuring reliable target visibility in environments with occlusions is a critical challenge. Occlusions 

can severely disrupt tracking accuracy, and the need for real-time communication and dynamic adjustment 

becomes even more demanding in collaborative systems. Both in individual and multi-vehicle tracking, 

maintaining a continuous, accurate track of the target in such complex environments remains a key challenge. 

5.1.2. Real-time prediction and tracking in dynamic environments 

Predicting the future position of a moving target in real-time is a significant challenge due to the often 
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unpredictable and dynamic nature of target motion. Targets may exhibit erratic behaviors such as sudden changes 

in speed or direction, nonlinear movements, or abrupt stops, which can be difficult for traditional prediction 

algorithms to handle. For example, in complex environments, the motion may not follow easily identifiable 

patterns, making it hard to use simple models like Kalman filters or regression-based methods effectively. While 

deep learning models hold promise for improving prediction accuracy, they require large datasets for training and 

substantial computational resources, making them difficult to deploy in real-time scenarios, particularly in 

fast-moving or highly dynamic environments. 

When there are multiple UAVs involved, the challenge becomes even more complex. Each UAV needs to 

predict the target’s future position not only based on its own observations but also in coordination with the actions 

of other UAVs. This requires sophisticated algorithms that can account for the interaction between multiple agents 

while making real-time adjustments to tracking paths. Furthermore, when UAVs need to collaborate to track a 

single target, there is the added complexity of ensuring all UAVs are in sync with the target’s predicted trajectory, 

which requires precise communication and coordination. 

The task of predicting and tracking a target’s position in dynamic environments presents substantial 

challenges, both in terms of accurately forecasting the target’s motion and ensuring that the UAV can adapt their 

flight paths in real-time. Whether using individual UAVs or a collaborative system, real-time prediction is a 

computationally demanding task, and achieving optimal tracking accuracy remains difficult when dealing with 

unpredictable behaviors and high-speed movements. 

5.1.3. Flight safety and coordination 

Ensuring the safety of UAVs in dynamic environments, particularly in complex tracking scenarios, involves 

maintaining stable flight paths and avoiding collisions with both the environment and other UAVs. This is 

especially challenging when the target’s movement is unpredictable, as the UAV must continuously adjust its flight 

trajectory to avoid obstacles while staying on track with the target. External disturbances like wind or sudden 

changes in weather conditions can further complicate this task, potentially destabilizing the UAV’s flight path. 

Accurate and real-time control is essential for maintaining the safety and stability of the UAV while tracking the 

target. 

In scenarios where multiple UAVs are used for collaborative tracking, the complexity of maintaining flight 

safety increases significantly. Coordinating multiple UAVs requires advanced algorithms to prevent collisions not 

only with the target but also with other UAVs. As the number of UAVs grows, the challenge of synchronizing their 

actions and ensuring safe trajectories becomes more difficult. Communication delays and bandwidth limitations 

can hinder the real-time coordination needed for effective collision avoidance. Additionally, UAVs need to 

dynamically reassign tasks and adjust their positions, which introduces additional layers of complexity in ensuring 

safety across all involved UAVs. 

In summary, flight safety and coordination in dynamic environments present significant technical challenges, 
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particularly when dealing with real-time adjustments, environmental disturbances, and coordination among 

multiple agents. Whether tracking with a single UAV or coordinating a swarm of UAVs, ensuring both safe flight 

and precise target tracking requires complex algorithms and robust systems that can adapt to unpredictable 

conditions. 

5.1.4. Resource management and energy efficiency 

In UAV-based target tracking, efficient resource management is a critical challenge, particularly when 

multiple UAVs are involved in tracking tasks. UAVs rely on onboard resources such as battery power, processing 

capacity, and communication bandwidth, all of which are limited. These resources must be managed effectively to 

ensure that UAVs can maintain continuous operation while tracking a target, especially in scenarios that demand 

long-duration missions or involve multiple UAVs. In particular, energy consumption becomes a major concern 

during extended flights or when UAVs are required to maintain high levels of performance in unpredictable 

environments. 

When multiple UAVs are operating in coordination, the challenge extends to the allocation of tasks and 

resources across the swarm. Not only must each UAV handle its tracking and communication duties, but the 

system must also dynamically allocate resources such as power and computational capacity in real-time to 

optimize overall performance. For example, UAVs may need to switch between different modes of 

operation—such as active tracking or low-power idle states—to conserve energy while still ensuring efficient 

tracking. Additionally, communication between UAVs must be optimized to prevent network congestion or data 

loss, which could affect tracking accuracy. 

Managing resources efficiently, particularly in terms of energy, computation, and communication, is a key 

challenge in ensuring that UAVs can track targets over extended periods while maintaining performance. This 

challenge becomes even more pronounced as the number of UAVs increases, requiring advanced algorithms for 

task distribution, energy conservation, and real-time adjustments to optimize system-wide resource usage. 

The challenges in UAV-based target tracking—whether involving a single UAV or a coordinated group—are 

centered around maintaining accurate and continuous target visibility, predicting the target’s movement in dynamic 

environments, ensuring flight safety, and managing resources effectively. These challenges are exacerbated by 

factors such as environmental interference, unpredictable target behaviors, and the complexity of coordinating 

multiple UAVs in real-time. Additionally, the need for efficient resource allocation, particularly with respect to 

energy and communication bandwidth, further complicates the task of sustained and reliable tracking. Despite 

advances in prediction algorithms and multi-agent coordination techniques, achieving efficient, accurate, and safe 

tracking while managing limited resources remains a critical difficulty in UAV systems. 

5.2. Future research 

To address these challenges, future research in UAV-based target tracking should focus on developing 

innovative solutions that can enhance system performance in complex and dynamic environments. Efforts should 
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be directed toward improving target visibility and overcoming occlusions through advanced sensor fusion 

techniques and novel tracking algorithms. Additionally, real-time prediction models that can handle unpredictable 

target behaviors and adapt to dynamic changes will be crucial for improving tracking accuracy. In parallel, 

research into optimizing flight safety and resource management, especially in multi-UAV systems, will be essential 

to ensure efficient operation and coordination. By advancing these areas, UAV systems can achieve more robust, 

accurate, and efficient tracking capabilities, paving the way for their broader application in real-world scenarios. 

5.2.1. Advanced occlusion handling and vision systems 

Future research could focus on developing more robust algorithms for handling occlusions and maintaining 

target visibility, especially in environments with high-density obstacles. This could include innovations in sensor 

fusion, where data from various sensors (e.g., LiDAR, thermal cameras, and radar) are integrated to provide a 

more comprehensive view of the environment. Additionally, exploring advanced computer vision techniques, such 

as deep learning-based object recognition and tracking in partially occluded conditions, can help UAVs predict 

target behavior even when the line-of-sight is temporarily lost. 

5.2.2. Improved real-time prediction algorithms with adaptive models 

To enhance prediction accuracy in dynamic environments, future research should focus on the development of 

more adaptive and efficient real-time prediction algorithms. This could involve combining deep learning with 

traditional methods like Kalman filters, creating hybrid models that can better capture both linear and nonlinear 

behaviors of moving targets. Researchers may also explore reinforcement learning-based approaches that allow 

UAVs to adapt their prediction models continuously as they gather new data, improving accuracy without requiring 

large datasets upfront. 

5.2.3. Swarm intelligence and coordination algorithms 

As UAV swarms become more prevalent, developing scalable and fault-tolerant coordination algorithms is 

critical. Future research should focus on decentralized decision-making frameworks that enable UAVs to 

collaborate without relying heavily on a central controller. This would improve the system’s robustness to 

communication delays, environmental interference, and other disruptions. Additionally, improving multi-agent 

reinforcement learning techniques for coordinated flight paths and task allocation could lead to more efficient and 

reliable swarm-based tracking systems. 

5.2.4. Resource optimization for autonomous UAV operations 

Efficient resource management, particularly energy and communication bandwidth, is an ongoing challenge 

in UAV-based tracking. Future research should explore energy-efficient flight strategies, such as dynamic task 

switching and collaborative energy sharing between UAVs in a swarm. Additionally, optimizing communication 

protocols to minimize latency and prevent data congestion in real-time environments is crucial for maintaining 

accurate tracking and coordination among UAVs. Investigating lightweight edge computing techniques to reduce 

computational overhead while maintaining high-performance tracking could also be a key area of focus. 
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6. Conclusions 

In this paper, we provide a comprehensive review of UAV-based moving target tracking methods, focusing on 

three key aspects: the status of target information prediction methods, the status of target information tracking 

methods, and the status of swarm cooperation-based methods. While significant advancements have been made in 

these areas, challenges remain in terms of real-time prediction accuracy, maintaining continuous target visibility in 

dynamic environments, ensuring flight safety, and efficiently coordinating multiple UAVs. Additionally, issues 

such as resource limitations, including energy consumption and computational capacity, continue to impact the 

performance of UAV systems. Despite the progress, there are still notable gaps in existing methods, and the future 

research directions in UAV-based target tracking hold substantial promise for overcoming these challenges and 

enhancing overall system performance. 

In conclusion, the field of UAV-based moving target tracking is both highly interdisciplinary and challenging, 

yet it holds significant potential across various applications. Continuous research and development efforts are 

crucial in driving the enhancement of tracking techniques and systems, thereby enabling UAVs to assume an 

increasingly vital role in modern society. As technological advancements persist, we can anticipate the emergence 

of more sophisticated and reliable UAV-based moving target tracking solutions, which are poised to have a 

profound impact on our lives. 
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