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Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a
research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge
(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost
phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity
turning model, a knowledge-driven target three-dimensional turning (T3) model is derived. Then, the BP
neural network is used to train the boost phase trajectory database in typical scenarios to obtain a data-
driven state parameter mapping (SPM) model. On this basis, an online trajectory prediction framework
driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning
coefficients of the target are predicted by using the current state of the target, and the state of the target
at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out
under various conditions. The simulation results show that the DKTP algorithm combines the advantages
of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the un-
certainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.
© 2025 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

Ballistic missile has the advantages of strong penetration
capability, great lethal power, and high cost-effectiveness ratio,
which has become one of the most threatening offensive weapons
in modernwarfare [1,2]. Therefore, the establishment of a complete
missile defense system has become the focus of research of all
countries [3e7]. Among the many technical links of the missile
defense system, the trajectory prediction of ballistic missiles is a
crucial link. Fast, high-precision trajectory prediction can provide
sufficient response time for defense systems and guidance infor-
mation for interceptors [8,9].

The ballistic missile flight trajectory is usually divided into boost
phase, free-flight phase and reentry phase [10]. In view of the flight
characteristics of these three different phases, the missile defense
system has also developed three interception methods, boost
interception, mid-stage interception, and terminal interception
[11]. Ballistic missiles are not affected by aerodynamic forces in the
nance Society.

services by Elsevier B.V. on behalf
c-nd/4.0/).

u et al., Trajectory prediction
.02.001
free-flight phase, have a long flight time, strong trajectory regu-
larity, and are easy to detect and predict, so the mid-course inter-
ception technology is relatively mature [12]. Ballistic missiles are
affected by gravity and aerodynamic drag in the reentry phase, and
through the improvement and optimization of the low-level air
defense system, the terminal interception technology has also been
rapidly developed, forming a terminal defense system with oper-
ational flexibility [13]. However, the latter two interception
methods also have some disadvantages, such as the decoy and
warhead released in the free-flight phase will bring difficulties to
target identification, and the reentry phase of the ballistic missile is
too fast, making interception more difficult. In contrast, the boost
phase interception has many advantages [11]: 1) The engine tail
flame of the ballistic missile is conducive to detection and stable
tracking. 2) The flight speed is relatively low. 3) There is no
deception interference in the boost phase flight, and all warheads
can be destroyed if the interception is successful. 4) Secondary
interception can be carried out if the interception is unsuccessful.
Based on the above considerations, scholars have gradually devoted
their energy to the research work of the boost phase interception
[14e17]. To establish the complete missile defense system and
provide accurate and reliable trajectory prediction information for
of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-
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boost phase interception, this paper studies the problem of high-
precision trajectory prediction of the boost phase.

At present, trajectory prediction algorithms are mainly divided
into two categories, knowledge-driven and data-driven. The
knowledge-driven trajectory prediction algorithms can make full
use of existing knowledge, including existing model and algorithm
knowledge, rule experience knowledge, and domain-specific
knowledge [18e20]. Knowledge-driven methods can deeply inte-
grate multidisciplinary knowledge. A perfect theoretical system
helps to establish an accurate model, and the algorithm has good
stability [21,22]. Knowledge-driven trajectory prediction algo-
rithms are widely used in trajectory prediction of hypersonic ve-
hicles. Li et al. [23] fully analyzed the motion characteristics of the
near space hypersonic vehicle (NSHV), and selected the flight state
as the prediction parameter. Then they used Hough transform to
detect the time series of different parameters, and predicted the
trajectory according to the fitting function. Hu et al. [24] established
amaneuveringmode parameter model based on the autoregressive
method to mine the historical data of the aircraft. On this basis,
Bayesian estimation theory is used to predict the intention to deal
with the sudden change of maneuver mode. For ballistic missiles,
knowledge-based trajectory prediction algorithms are mostly used
to predict the trajectory of the free-flight phase and the reentry
phase. The commonly used methods include the analytical method
[18], the numerical integration method [19], and the function
approximation method [25]. Compared with the free-flight phase
and the reentry phase, the trajectory prediction of ballistic missiles
in the boost phase is affected by unknown forces such as thrust,
aerodynamic drag and gravity. Therefore, trajectory prediction at
this phase is more challenging. Due to the complexity of the force,
the applicability of knowledge-driven trajectory prediction models,
such as polynomial prediction models and target gravity turning
models, is reduced, and it is difficult to accurately describe the
motion characteristics in the boost phase [10]. In recent years, data-
driven trajectory prediction algorithms have developed rapidly. The
data-driven method directly constructs the corresponding map-
ping relationship through the database, which does not require
accurate modeling [26,27]. It can continuously learn and evolve
from the data, and the algorithm has strong versatility [28e30].
Commonly used data-driven trajectory prediction methods include
BP neural networks [31], convolutional neural networks [32],
recurrent neural networks [16], and Gaussian process regression
[33]. Researchers can design and improve corresponding intelligent
algorithms according to specific problems. However, with the
increasing complexity of the problem, problems such as dimen-
sional disasters and over-reliance on huge computing power have
brought severe challenges to data-driven trajectory prediction. At
the same time, the current data-drivenmethod has some problems,
such as the lack of clarity of physical meaning and the large demand
for high-quality data. For objects such as ballistic missiles, which
have complex flight environments and are not rich in historical
data, their engineering application is difficult.

Through the above analysis, there are certain deficiencies and
defects in both data-driven method and knowledge-driven
method. Combining them can make full use of their respective
advantages and further enhance the performance of the algorithm
[34,35]. The data-driven method has the characteristics of strong
nonlinear expression ability and offline/online learning, which can
make up for the limitations of the knowledge-drivenmethod under
the complexity of the model, the absence of accurate modeling, and
the uncertainty of the environment. The knowledge-drivenmethod
can decompose and reduce the dimension of complex problems, or
optimize the initial parameter value and learning architecture of
the data-driven method, which is conducive to the convergence of
data-drivenmethods. At present, themethod driven by themixture
2

of data and knowledge is widely used in the field of aircraft control
[36], but it is rarely used in the field of aircraft trajectory prediction.
Therefore, this paper combines data-driven and knowledge-driven,
and proposes a trajectory prediction algorithm for ballistic missiles
driven by data and knowledge (DKTP).

1) Aiming at the problem of acceleration abrupt change caused by
interstage switching of multi-stage ballistic missile and the
change of flight procedures, this paper combines the dynamics
model in the boost phase with the gravity turning (GT) model of
the target to derive the three-dimensional turning (T3) model.
The T3 model can accurately describe the three-dimensional
motion trajectory in the boost phase.

2) Combined with the dynamics model in the boost phase and the
T3 model, the three-dimensional turning parameters during the
flight in the boost phase is extracted and analyzed. The three-
dimensional turning parameters can accurately reflect the
thrust change of the boost phase engine and the change of flight
program.

3) The relationship between the three-dimensional turning
parameter and the flight state is derived, and the state-
parameter mapping (SPM) model in the boost phase is estab-
lished based on the trajectory database and the BP neural
network. The SPM model takes the current state of the target as
the input and the target three-dimensional turning coefficient
as the output. Combined with the SPMmodel and the T3 model,
the trajectory in the boost phase can be predicted online.

The rest of this article is organized as follows. A typical trajectory
prediction scenario in the boost phase based on the air-based dual
infrared detector is established in Section 2. In Section 3, the DKTP
algorithm is designed. The results of the numerical simulations are
presented in Section 4. Finally, Section 5 presents the conclusion.
2. Problem description

As shown in Fig. 1, in this paper, the air-based dual infrared
detector is used to continuously track the ballistic missile to time Tt,
and then predicts the flight trajectory of any future time Tt < t < Tp.
To accomplish this, this section provides the motion model and
measurement model for ballistic missile in the boost phase.
2.1. Motion model

The motion model of ballistic missile in boost phase is estab-
lished based on a 6-degree-of-freedom simulation model, which
considers the Earth's rotation and treats it as a standard ellipsoid.
During the flight in the boost phase, the missile is mainly affected
by gravity, engine thrust and aerodynamic force. Ignoring the
control force and its torque effect. According to the Newton's sec-
ond law and the vector derivation rule, the dynamics equation for
the centroid of a missile in the launch coordinate system is [10].

m
d2r
dt2

¼PþRþmg�2mue � dr
dt

�mue � ðue � rÞ (1)

where r is the vector from the center of the earth to the current
position of the missile. R is the aerodynamic vector acting on the
missile. P is the engine thrust vector. m is the current missile mass.
g is the gravitational acceleration. ue is the rotational angular ve-
locity of the launch coordinate system relative to the geocentric
inertial coordinate system (ECI-CS).

Then, the dynamics equation for the centroid of a missile is:



Fig. 1. Schematic diagram of boost phase trajectory prediction.

Fig. 2. Schematic diagram of air-based early warning platform detection.
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where
�
dvx=dt dvy=dt dvz=dt

�T is the component of the relative

acceleration term in the launch coordinate system.G10 ¼ G�1
01 is the

conversion matrix from the body coordinate system to the launch

coordinate system. P is the thrust. G13 ¼ G�1
31 is the conversion

matrix from the velocity coordinate system to the launch coordi-

nate system.
h
Cx Ca

y Cb
x

iT
is the aerodynamic coefficient. q is the

dynamic head. SM is the characteristic area. a and b are the angle of
attack and sideslip angle respectively. g0r and gue are the gravita-

tional acceleration terms.
�
Rox Roy Roz

�T is the component of the
launch point geocentric vector R0 in the launch coordinate system.�
uex uey uez

�T is the component of ue in the launch coordinate

system.
�
aex aey aez

�T is the centrifugal inertial acceleration, and�
akx aky akz

�T is the Coriolis inertial acceleration.
The kinematic equation for the centroid is:

8>>>>>>><
>>>>>>>:

dx
dt

¼ vx

dy
dt

¼ vy

dz
dt

¼ vz

(3)

The boost phase motion model of ballistic missiles can provide a
basis for the generation of ballistic databases, and can also be used
to provide guidance for the design of target state/parameter joint
estimation trackers.
3

2.2. Measurement model

Because the ballistic missile engine produces a large amount of
high-temperature tail flames whenworking, it has obvious infrared
characteristics and is easy to be detected and tracked by infrared
detectors. As shown in Fig. 2, this paper will use the air-based
infrared detector to detect the boost phase of the missile, which
can effectively make up for the shortcomings of the early warning
capability of land/sea-based early warning platforms. Compared
with space-based early warning systems, air-based early warning
and detection systems are highly mobile which can be lifted into
the air within hours or even minutes, and are not affected by at-
mospheric refraction [37].

In this paper, the dual infrared measurement model is adopted.
The detection model describes the relationship between the posi-
tion of the aircraft and the detection data of the detector. The
general expression for the dual infrared measurement model is
[37].
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Y i ¼
�
A1;i; E1;i;A2;i; E2;i

�¼hðX iÞ (4)

where A1;i; E1;i is the azimuth angle and the altitude angle obtained
by the first detector S1 at i moments respectively. A2;i; E2;i is the
azimuth angle and the altitude angle obtained by the second de-
tector S2 at i moments respectively, and Xi is the state vector of the
target at i moment.

Suppose that the coordinates of the aircraft and the detector Sn
are ½ x y z �T and ½ x y z �TSn , respectively, in the Earth-centered
fixed coordinate system (ECF-CS). Then the component of the
line-of-sight vector of the aircraft relative to the detector in the
detection coordinate system is:

DRSn ¼
2
4 xnyn
zn

3
5¼GSn

E

0
@
2
4 x
y
z

3
5�

2
4 xy
z

3
5
Sn

1
A;n¼1;2 (5)

where GSn
E is the conversion matrix from ECF-CS to the detection

coordinate system. The formula for calculating the azimuth angle
and the altitude angle is:

8>>>>>><
>>>>>>:

An ¼ arctan
�
�zn
xn

�

En ¼ arctan

0
B@ ynffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2n þ y2n
q

1
CA

(6)

Eqs. (4) and (6) constitute the analytical formula of the mea-
surement model.

3. Trajectory prediction algorithms driven by data and
knowledge

The framework of the trajectory prediction algorithm driven by
data and knowledge (DKTP) is established, as shown in Fig. 3. The
DKTP algorithm consists of three parts. The first is the knowledge-
driven part. Considering the abrupt acceleration in the boost phase,
the traditional trajectory prediction model cannot accurately
describe the motion characteristics in the boost phase. Therefore,
based on the dynamics model of the boost phase and the GTmodel,
the T3 model is derived, and the three-dimensional turning
parameter is extracted. The second is the data-driven part. Trajec-
tory database is established based on the dynamics model in the
boost phase. The T3 model and BP neural network are used to train
the trajectory database to obtain the boost phase SPM model.
Finally, the knowledge-driven and data-driven are combined, and
the turning parameter at the current moment is predicted by the
current moment state of the aircraft obtained by tracking. On this
basis, the next moment state of the target is obtained by combining
the turning parameter at the current moment and the T3 model,
and it is continuously iterated until the end of the forecast.

3.1. The three-dimensional turning model

3.1.1. Analysis of the dynamics characteristics
The dynamics of the multi-stage ballistic missile in the boost

phase is essentially a process of variable mass motion, and the ac-
celeration of each stage changes slowly with the change of mass.
However, there are mass abrupt changes and thrust abrupt changes
at the shutdown points at all levels, which will cause drastic
changes of the acceleration in the interstage switching stage. In
addition, the guidance and control of the boost phase also makes it
difficult to give a clear law of acceleration motion. Multi-stage
4

booster ballistic missiles have fast speed, complex maneuvering
characteristics, and difficult prediction, so it is necessary to analyze
the motion characteristics in the boost phase.

During the flight of the ballistic missile in the boost phase, it is
mainly affected by the engine thrust, aerodynamic force and the
Earth's gravity, among which the engine thrust accounts for the
largest proportion. According to the flight characteristics in the
boost phase, it can be divided into the vertical flight segment, the
turning segment and the aiming segment. The vertical flight sec-
tion is the first stage after the missile is launched, which generally
only takes a few seconds, and its purpose is to ensure the stability of
the missile's take-off and make the engine enter the rated working
state. After the end of the vertical ascent stage, the missile flies into
the turning section. The turning section is divided into the negative
angle of attack turning section and the gravity turning section. In
this stage, under the action of the guidance system, the missile
deflects from the vertical flight state to the target direction. The
missile must turn according to the prescribed procedure to hit the
target accurately. The last section is the aiming section, which is the
section from the end of the turning section to the shutdown point.
The main purpose of this section is to control the speed of shut-
down points to control the range of missiles. Generally, the pitch
angle can be used as a control quantity for ballistic design. The
variation law of the pitch angle in the boost phase is shown in Fig. 4.

The kinetic characteristics in the boost phase of a typical long-
range ballistic missile are analyzed below. The ballistic missile is
a three-stage booster missile. The end time of the first-stage
booster is 75 s, the end time of the second-stage booster is 155 s,
and the end time of the third-stage booster which is the moment
the engine turned off is 201 s. Figs. 5 and 6 show the velocity curves
in the boost phase. Figs. 7 and 8 show the acceleration curves in the
boost phase.

From the above simulation results, in addition to the abrupt
change of acceleration during inter-stage switching, the accelera-
tion curve will also fluctuate with the change of flight procedure
such as the turning section of negative angle of attack, the turning
section of gravity and the initial stage of aiming section. These bring
great challenges to the trajectory prediction in the booster section.
Therefore, it is necessary to establish a target motion model that
can accurately describe the acceleration change in the boost phase.
3.1.2. Model building and parameter extraction
During the flight of the boost phase, the engine thrust makes the

target accelerate the flight. The gravity and aerodynamic force
make the target turn. The typical ballistic missile maintains zero
angle of attack, following a gravity-turning trajectory. According to
the characteristics of the motion in the boost phase, it is suitable to
use the GT model to describe the target motion [10]. The core idea
of the GT model is assumed that in ECF-CS, the total force experi-
enced by the missile other than gravity is parallel to the relative
velocity vector. That is, the nongravitational net acceleration aN of
the target in ECF-CS is parallel to the velocity v. Define a scaling
factor k that satisfies [10]:

aN ¼ kv (7)

where k is called the gravitational turning parameter. Expand Eq.
(7) to obtain8<
:

aNx ¼ kvx
aNy ¼ kvy
aNz ¼ kvz

(8)

When k is unknown, extend k to the state quantity. the state
quantity is:



Fig. 3. Block diagram of the trajectory prediction algorithm driven by data and knowledge.

Fig. 4. Flight procedure of pitch angle in boost phase of ballistic missile.

Fig. 5. The three-dimensional velocity curve in the boost phase.
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X¼ �x; y; z; vx; vy; vz; k�T (9)

Considering the system noise, the GT model is:
5

8>>>>>>>><
>>>>>>>>:

_x ¼ vx
_y ¼ vy
_z ¼ vz
_vx ¼ kvx þ aGx

þwx
_vy ¼ kvy þ aGy

þwy
_vz ¼ kvz þ aGz

þwz
_k ¼ 0þwk

(10)

where aG ¼ � mp=p3 ¼ ½aGx; aGy; aGz�T, p ¼ ½x; y; z�T. The system
noise is wiði ¼ x;y;z;kÞ.



Fig. 6. The velocity curve in the boost phase.

Fig. 7. The three-dimensional acceleration curve in the boost phase.

Fig. 8. The acceleration curve in the boost phase.
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Mass abrupt changes and thrust abrupt changes occur during
the switching between the boost phase of a multi-stage ballistic
missile, which will lead to drastic changes in the acceleration in the
boost phase. At the same time, the change of flight procedure in the
boost phase will also bring difficulties to accurately describe the
acceleration change of the target. At this point, the GTmodel can no
longer accurately describe the movement of the target. Therefore,
this paper improves the GT model.

Defining K as the three-dimensional turning parameter:

8>>>>>>><
>>>>>>>:

kx ¼ aNx
vx

ky ¼ aNy
vy

kz ¼ aNz
vz

(11)

Then the three-dimensional turning (T3) model in the target
6

boost phase is obtained as follows:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

_x ¼ vx
_y ¼ vy
_z ¼ vz
_vx ¼ kxvx þ aGx

þwx
_vy ¼ kyvy þ aGy

þwy
_vz ¼ kzvz þ aGz

þwz
_kx ¼ 0þwkx
_ky ¼ 0þwky
_kz ¼ 0þwkz

(12)

where wiði¼ x; y; z; kx; ky; kzÞ is the system noise. K ¼ ðkx; ky; kzÞ is
the ratio of the nongravitational net acceleration component
ðaNx; aNy; aNzÞ to the velocity component ðvx; vy; vzÞ of the target in
ECF-CS.

K is analyzed below. A typical three-stage booster ballistic
missile is selected, and the launch conditions are the same as those
set in the analysis of the kinetic characteristics in the boost phase.
The acceleration and the nongravitational net acceleration in the
boost phase are obtained as shown in Figs. 9 and 10. It can be seen
they have the same change trend. This fully illustrates the equiva-
lence of the description of missile maneuverability by using ac-
celeration and the nongravitational net acceleration as
maneuvering parameters. However, the gravity model needs to be
constructed for acceleration estimation, and the gravity model in
the boost phase is more complex, so it is more advantageous to
choose the nongravitational net acceleration as the maneuvering
parameter estimation. At the same time, the nongravitational net
acceleration curve is smoother at all levels, which is more helpful
for trajectory prediction.

The Comparison of K in the boost phase is obtained as shown in
Fig. 11. From comparison chart of the three-dimensional turning
parameter K and the gravity turning parameter k, it can be seen
that there are significant differences between K and k in the aiming
section of the multi-stage booster ballistic missile. It shows that the
GT cannot accurately express the acceleration characteristics of
ballistic missiles in the aiming section, and there are algorithm
limitations. However, the T3 model feeds back the three-axis ac-
celeration respectively, which has higher model accuracy.



Fig. 9. Comparison of the three-dimensional acceleration curves.

Fig. 10. Comparison of the acceleration curves.

Fig. 11. Comparison of the turning parameter curves.
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3.2. The state-parameter mapping model

3.2.1. Model building
After obtaining the T3 model, the state-parameter mapping

(SPM) model will be established. The trajectory dataset is used to
study the flight law of the boost phase. The relationship between K
and the target engine working time, target position and speed is
obtained by fitting. From Eq. (1), the nongravitational net acceler-
ation in the boost phase is:

aN ¼P þ R� 2mue � dr
dt �mue � ðue � rÞ
m

(13)

Expand Eq. (13) in the launch coordinate system:

aN ¼G10

m

2
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3
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The nongravitational net acceleration in the launch coordinate
system is converted to ECF-CS to obtain:

aN ¼GE1G10

m

2
4 P0
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3
5þGE1G13
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where GE1 is the conversion matrix from the launch system to ECF-
CS. Then the formula for calculating K can be obtained as follows:

K ¼aN
v

¼GE1G10

mv

2
4 P0
0

3
5þGE1G13
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As can be seen from the calculation formula of K , K is related to
the prior information thrust of the target p, the state information
position r, and the velocity v. Among them, the thrust P is related to
the engine operating time t. Therefore, the SPM model is estab-
lished as follows:

K ¼ �kx; ky; kz�¼ f ðt; r; vÞ (17)

Through the above analysis, it can be seen the SPM model
should be a seven-input and three-output model. The structure of
the SPM model is shown in Fig. 12.
3.2.2. Network structure
Due to the complexity of themappingmodel, it is not possible to

give an analytical solution directly. In this paper, we will use the
powerful learning ability of neural networks to establish a mapping
model between motion state and K . Because of the unique error
back propagation training method of BP neural network, the
problem that the connection weight of hidden layer of neural
network can not be adjusted is successfully solved [38]. This paper
uses the BP neural network to train the SPM model.

The main idea of BP neural network is to compare the results
obtained by the output layer with the expected output, and use the



Fig. 12. Structure diagram of the SPM model.
Fig. 13. Structure diagram of BP neural network.
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error to adjust the weights between the hidden layer and each
neuron. It consists of two processes: the forward propagation of the
input signal and the back propagation of the output result error
[38]. Defines the output error as:

E¼1
2
ðD� dÞ2 ¼1

2

Xl
k¼1

ðDk � dkÞ2 (18)

where d is the output value. D is the expected output, and l is the
output dimension.

The error is propagated back to the hidden layer as:

E¼1
2

Xl
k¼1

0
@Dk � F

0
@Xm

j¼1

ujkyj � c

1
A
1
A2

(19)

where m is the number of neurons in the hidden layer. u is the
weight corresponding to the connection of neurons from the hid-
den layer to the output layer. c is the threshold.

The error is propagated back from the hidden layer to the input
layer:

E¼1
2

Xl
k¼1

0
@Dk � F

0
@Xm

j¼1

ujkF

 Xn
i¼1

wijxi � b

!
� c

1
A
1
A2

(20)

It can be seen from the above formula that the output error is a
function of the weight w between the input layer and the hidden
layer, and the weight u between the hidden layer and the output
layer. The range of output error can be adjusted by adjusting the
weight. In order to achieve the approximation of the input-output
relationship, the output error should beminimized by adjusting the
weight. Therefore, the weight adjustment method between layers
can be selected as:8>>>><
>>>>:

Dwjk ¼ �h
vE
vwjk

j ¼ 1;2;/;m; k ¼ 1;2;/; l

Duij ¼ �h
vE
vuij

i ¼ 1;2;/;n; j ¼ 1;2;/;m

(21)

where h is Learning rate.
The structure of the BP neural network used in this paper is

shown in Fig. 13. The input is the prior information and the state
information of the target ðt;r;vÞ, the output is K ¼ ½kx;ky;kz�, and
the hidden layer is selected as two layers. When training a neural
8

network, the parameters in the neural network are divided into two
categories. One is parameters that can be updated by way of
learning, such as weights between neurons u and biases of neurons
b. The other type of parameters cannot be updated by learning,
which are called hyperparameters, such as the number of neuronal
nodes between layers, the number of hidden layers, and the
learning rate. In this paper, the hyperparameters are determined by
multiple simulations. Finally, the number of nodes in hidden layer 1
is 60, and the number of nodes in hidden layer 2 is 18. By preparing
a large amount of data to train the above-mentioned neural
network, the neural network obtained after determining the
weights of each layer can realize the approximation of the model
parameter K. In this paper, the scheme of offline training network
and online trajectory prediction is adopted.
3.2.3. Generation and processing of trajectory dataset in the boost
phase

In the training of neural networks, the more complex the rela-
tionship between input and output, the more sample data is
required, and the randomness and balance of sample data must be
ensured. In this paper, the optimal trajectory under different launch
points and target points is selected as the sample trajectory. Taking
a certain type of mobile-launched intercontinental ballistic missile
(ICBM) as the research object, the launch point and target point of
the missile are randomly generated by uniform distribution. At the
same time, from the perspective of the defense side, the incoming
ballistic missile target is a non-cooperative target. This means that
its model parameters cannot be fully grasped. Therefore, the pa-
rameters that have a greater impact on the trajectory shape of the
target 's boost phase, such as engine working time, thrust, and
aerodynamic coefficient, will be randomly deflected to varying
degrees. Table 1 shows the parameter of trajectory dataset,
including the range of launch point, the range of target point, and
the degree of parameter deviation.

In the range of the launch point and the target point shown in
Table 1, the trajectory dataset of the boost phase is obtained by
planning the missile launch data. As shown in Fig. 14, 1000 trajec-
tories are obtained to construct a trajectory dataset of the boost
phase, including 500 trajectories generated by standard parameters
and 500 trajectories generated by deviation parameters. It can be
seen from Fig. 14 that the trajectory dataset of the boost phase
contains all the typical trajectories of the boost phase as much as
possible. In the boost phase trajectory dataset, 70% is randomly
selected as the training set, 15% as the test set, and 15% as the
verification set.

According to the characteristics of the sample data, it is usually



Table 1
Parameter of trajectory dataset.

Parameter Value

Longitude of the launch point/(�) ½45 50�
Latitude of the launch point/(�) ½15 20�
Altitude of the launch point/m ½0 1000�
Longitude of the target point/(�) ½60 65�
Latitude of the target point/(�) ½45 53�
Altitude of the target point/m ½0 1000�
Range/km ½2965:7 4523:1�
The maximum deviation percentage of engine working time/% 10
The maximum deviation percentage of thrust/% 10
The maximum deviation percentage of aerodynamic

coefficient/%
10

Fig. 14. Trajectory dataset in the boost phase.

Table 2
Network setting.

Network setting Function/Value

The loss function Mean Square Error
The training algorithm Levenberg-Marquardt
The activation function The Tan-Sigmoid transfer function
The output layer The linear activation function
The maximum number of training sessions 1000
The accuracy required 1e-6

Fig. 15. The training process.
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necessary to normalize the data. Map the data to the interval ½�1;1�
and calculate it as follows:8>><
>>:

xmid ¼ xmax þ xmin
2

xi ¼
xi � xmid

0:5ðxmax � xminÞ
; i ¼ 1;2;/;N

(22)

where xi is the input sample data. xmax is the maximumvalue of the
sample data. xmin is the minimum value of the sample data. xmid is
the middle value of the sample data. xi is the normalized sample
data, and N is the sample data volume. After normalization ac-
cording to Eq. (22), the median value of the input sample data is 0,
and the minimum and maximum values of the sample data are �1
and 1 respectively.
Fig. 16. The linear regression results.
3.2.4. Training process and results
The parameter settings of the neural network training are as

shown in Table 2.
Figs. 15 and 16 show the training process and linear regression

results of the SPM model respectively. The input parameters of the
training set, test set and verification set are substituted into the
model, and the predicted output results of the model are compared
with the actual data. the residuals of the turning parameters kx; ky;
kz are obtained as shown in Figs. 17e19. From the training process
and the residual diagram, it can be seen the trained neural network
can adapt to state changes, the model error is small, and the
9

mapping relationship between state and parameters is well fitted.
At the same time, due to the deflected parameters of the missile,
the generalization of the model is also guaranteed.



Fig. 17. The residuals of K in the training set.

Fig. 18. The residuals of K in the test set.

Fig. 19. The residuals of K in the verification set.
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3.3. Online trajectory prediction

For the trajectory of the ballistic missile predicted online, when
the tracker estimates the continuous state to the start of the fore-
cast, the established the SPM model is started to predict and
reconstruct the trajectory. Specifically, according to the state Xt of
the predicted start moment, K t of the predicted start moment can
be obtained by the SPM model. Then the state Xtþ1 of the next
moment is obtained through the T3 model, it is continue fed into
the SPM model to obtain K tþ1 of the next moment. By analogy, the
predicted trajectory of a ballistic missile can be obtained at any T > t
time. The online trajectory prediction and update scheme is shown
in Fig. 20.
4. Simulation analysis

4.1. Simulation settings

The ballistic missile in subsubsection 3.2.3 is taken as the
10
research object. In the range of launch point and target point, two
trajectories are generated based on standard missile parameters
and deflected missile parameters respectively, which are used to
verify the DKTP algorithm. At the same time, in order to verify the
applicability of the algorithm, by planning the missile launch data,
the trajectory generated based on the deflected parameters has
stronger maneuverability. The trajectory parameters are shown in
Table 3.

The trajectory curves of the boost phase are shown in
Figs. 21e26. Case 1 is the target trajectory based on the standard
parameter planning. Case 2 is the target trajectory based on the
deflected parameter planning. It can be seen that compared with
Case 1, the target trajectory of Case 2 has stronger maneuverability,
and the acceleration mutation is more obvious. Two trajectories
with completely different shapes can effectively verify the accuracy,
robustness and stability of the trajectory prediction algorithm.

Table 4 shows the parameters of the infrared detector.
The parameters of the trajectory prediction are shown in Table 5.

4.2. Simulation of trajectory tracking

Figs. 27e30 is the target trajectory tracking result of Case 1.
Figs. 31e34 is the target trajectory tracking result of Case 2. It can be
seen from Figs. 27e30 that the pure geometric positioning error is
about 400 m, the position tracking error can be stabilized below
100 m, and the velocity tracking error is gradually converging to
about 20 m s�1. It shows that the tracking scheme based on air-
based dual infrared detectors has a significant effect, which can
effectively reduce the pure geometric positioning error.

It can be seen from Figs. 31e34 that the tracking accuracy is still
high in the case of trajectory parameter deviation. It fully shows
that the tracking scheme based on space-based dual infrared de-
tector has high accuracy and strong stability.

4.3. Case 1

The following is the comparative simulation of trajectory pre-
diction in the boost phase under Case 1. The algorithms involved in
the comparison include.

1) The DKTP algorithm: Trajectory prediction algorithm driven by
data and knowledge proposed in this paper. BP neural network



Fig. 20. Flowchart of online trajectory prediction and update scheme.

Table 3
Trajectory parameters.

Parameters Case 1 Case 2

Longitude of the launch point/(�) 48.80 45.94
Latitude of the launch point/(�) 15.24 19.06
Altitude of the launch point/m 573.2 259.46
Longitude of the target point/(�) 60.85 62.93
Latitude of the target point/(�) 49.5 51.60
Altitude of the target point/m 0.58 0.33
Range/km 3954.6 3905.5
Launch azimuth/(�) 13.28 18.95
Limited angle of attack/(�) 9.78 5.78
Aiming angle of attack/(�) 3.54 36.10
Moment of the end point of the boost phase/s 201 205.9

Fig. 21. The range height curve.

Fig. 22. The range velocity curve.

Fig. 23. The acceleration curve.
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is used to train the three-dimensional turning coefficient K of
the target, and combined with the three-dimensional turning
model for trajectory prediction.

2) The GT-BP algorithm: BP neural network is used to train the
target gravity turning coefficient k, and combined with the
gravity turning model for trajectory prediction. It belongs to the
trajectory prediction algorithm driven by data and knowledge.

3) The T3-PCFTPA algorithm: The three-dimensional turning is
combined with the polynomial curve fitting trajectory predic-
tion algorithm. The three-dimensional turning coefficient K is
fitted for trajectory prediction. It belongs to knowledge-driven
trajectory prediction algorithm.

4) The GT-PCFTPA algorithm: The gravity turning model is com-
bined with polynomial curve fitting trajectory prediction
11
algorithm. The gravity turning coefficient k is fitted for trajectory
prediction. It belongs to knowledge-driven trajectory prediction
algorithm.



Fig. 24. The nongravitational net acceleration curve.

Fig. 25. The gravitational turning parameter curve.

Fig. 26. The three-dimensional turning parameter curve.

Table 4
Parameters of infrared detector.

Parameters Case 1 Case 2

Longitude of the first detector/(�) 48.79 45.94
Latitude of the first detector/(�) 14.25 18.06
Altitude of the first detector/km 10 10
Longitude of the second detector/(�) 48.79 45.94
Latitude of the second detector/(�) 16.25 20.06
Altitude of the second detector/km 10 10
Baseline length/km 220 220
Maximum detection distance/km 500 500
Detection accuracy/mrad 1 1

Table 5
Parameters of the trajectory prediction.

Parameter Value

The start moment of tracking/s 60
The start moment of predicting/s 80
The end moment of predicting/s 201

Fig. 27. Three-dimensional position error of trajectory tracking under Case 1.

Fig. 28. Position error of trajectory tracking under Case 1.
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Fig. 29. Three-dimensional velocity error of trajectory tracking under Case 1.

Fig. 30. Velocity error of trajectory tracking under Case 1.

Fig. 31. Three-dimensional position error of trajectory tracking under Case 2.

Fig. 32. Position error of trajectory tracking under Case 2.
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5) The RNN trajectory prediction algorithm: Recurrent neural
network is used to predict the target state. The RNN trajectory
prediction algorithm belongs to data-driven trajectory predic-
tion algorithm.

6) The LSTM trajectory prediction algorithm: Long short-term
memory neural network is used to predict the target state. It
belongs to data-driven trajectory prediction algorithm.

The trajectory prediction results of 1000 Monte Carlo shots are
shown in Figs. 35e38.

It can be seen that with the increase of prediction time, the six
algorithms have different degrees of divergence. Among them, the
T3-PCFTPA algorithm and GT-PCFTPA algorithm based on pure
knowledge-driven have the highest degree of divergence. When
13
the second stage booster is switched to the third stage booster
within 155 s, the RMSE curve of the speed prediction fluctuates
significantly. The accuracy of the RNN trajectory prediction algo-
rithm and the LSTM trajectory prediction algorithm based on pure
data-driven is slightly improved, and the speed RMSE curves fluc-
tuate less during inter-stage switching. This is because the use of a
large amount of data for training effectively reduces the prediction
error caused by the sudden change of target acceleration. The
prediction accuracy of the GT-BP algorithm is comparable to that of
the LSTM trajectory prediction algorithm. Because the GT model
cannot accurately describe the target maneuver, resulting in
limited improvement in prediction accuracy. Due to the combina-
tion of data-driven and knowledge-driven advantages, the DKTP
algorithm has the highest trajectory prediction accuracy and the
best algorithm stability. From the velocity RMSE curves, it can be
seen that compared with other algorithms, the DKTP algorithm can
accurately describe the maneuvering characteristics of the ballistic
missile boost phase, which is more sensitive to the three-
dimensional acceleration change of the boost phase.



Fig. 34. Velocity error of trajectory tracking under Case 2.

Fig. 33. Three-dimensional velocity error of trajectory tracking under Case 2.
Fig. 35. RMSE of the three-dimensional location prediction.

Fig. 36. RMSE of the location prediction.

H. Zang, C. Gao, Y. Hu et al. Defence Technology xxx (xxxx) xxx
4.4. Case 2

The comparative simulation results of trajectory prediction in
the boost phase under Case 2 are shown in Figs. 39e42. The algo-
rithm involved in the comparison is the same as Case 1.

As shown in Figs. 39 and 40, when the missile parameters are
deviated and the acceleration of the aiming segment increases
suddenly, the position prediction errors of these six algorithms
increase significantly. However, the DKTP algorithm proposed in
this paper can still control the position prediction error at about
10 km when the boosting phase ends. As shown in Figs. 41 and 42,
when the 155 s inter-stage switching and 173 s flight mode
switching, the speed prediction RMSE curves of other algorithms
14
except the DKTP algorithm fluctuate more violently. For the DKTP
algorithm, although the flight mode switching will also cause the
RMSE of the speed prediction to fluctuate, the fluctuation is not
large and can be called back quickly. This is because the three-
dimensional turning model can accurately describe the accelera-
tion mutation of the boost phase. When combined with the BP
neural network, the mapping relationship between the three-
dimensional turning coefficient K and the motion state can be
accurately established. Therefore, the DKTP algorithm has the best
prediction effect on the trajectory of the boost phase. It fully shows
that when the DKTP algorithm predicts the trajectory of non-
cooperative targets, even if the accurate target parameters cannot
be obtained, the trajectory prediction accuracy can still be
guaranteed.



Fig. 37. RMSE of the three-dimensional velocity prediction.

Fig. 38. RMSE of the velocity prediction.

Fig. 39. RMSE of the three-dimensional location prediction.

Fig. 40. RMSE of the location prediction.
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5. Conclusions

Aiming at the problem of high-precision trajectory prediction in
the boost phase of multi-stage ballistic missiles, this paper pro-
poses a trajectory prediction method driven by data and knowl-
edge. In order to cope with acceleration abrupt change in the boost
phase, this paper combines the dynamics model of the boost phase
with the target gravity turning model to derive the three-
dimensional turning model of the target. Then, by combining the
dynamic model of the boost phase and the three-dimensional
model, the three-dimensional turning parameter in the boost
phase is extracted. The three-dimensional turning parameter
changes during the flight in the boost phase are analyzed, and the
analysis results show it can accurately reflect the thrust change in
the boost phase engine and the change of flight program. On this
basis, the relationship between the three-dimensional turning
15
parameter and the flight state in the boost phase is derived. Using
the BP neural network to train the trajectory database in the boost
phase, and the state-parameter mapping model is established. The
state-parameter mapping model takes the current state of the
target as the input and the three-dimensional turning parameter of
the target as the output. Thanks to the strong nonlinear fitting
ability of the BP neural network and the accurate description of the
acceleration mutation of the boost phase by the three-dimensional
turning model, the trajectory prediction algorithm driven by data
and knowledge uses the turning coefficient mapped by the current
moment state to predict the state of the next moment, and
continuously extrapolates to realize the online prediction of the
trajectory. Finally, under the condition of different aiming angles of
attack, that is, different degrees of maneuver in the boost phase, the
trajectory prediction algorithm driven by data and knowledge
proposed in this paper is compared and simulated. The simulation



Fig. 41. RMSE of the three-dimensional velocity prediction.

Fig. 42. RMSE of the velocity prediction.
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results show that the DKTP algorithm combines data-driven and
knowledge-driven, makes full use of their respective advantages,
and effectively enhances the performance of the algorithm. The
trajectory prediction algorithm driven by data and knowledge uses
the state-parameter mapping model, which makes up for the
shortcomings of the knowledge-driven method under the condi-
tion of complex target motion model and flight environment un-
certainty. At the same time, the physical significance of the data-
driven method is clarified by using the three-dimensional turning
model and the three-dimensional turning parameter. It can effec-
tively alleviate the adverse effects of acceleration abrupt change of
the trajectory prediction in the boost phase, and can significantly
improve the trajectory prediction accuracy of ballistic missiles in
the boost phase, which has certain engineering application value.
16
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