Explosivos PBX basados en GAP/DNTF: una nueva formula usada en circuitos explosives de pequeño tamaño

En este documento se ha estudiado un PBX basado en GAP/DNTF para lo cual se preparó una composición de 3,4-dinitrofurazanofuroxano (DNTF) y glycidyl azida polimérica (GAP) como explosivo principal y ligante, respectivamente. Este PBX fue diseñado, preparado y utilizado para rellenar el pequeño espacio de algunos circuitos explosivos. La formulación de trabajo fue DNTF 85 %, GAP 11 %, 2,4-tolueno diisocianato (TDI) y otros aditivos para completar el 4% restante.

403
GAP/DNTF Based PBX Explosives: a Novel Formula Used in Small…
01
02
03
04
05
0
0
1000
2000
3000
4000
5000
6000
GAP/DNTF
2 Theta
0
1000
2000
3000
4000
5000
6000
Recrystallized DNTF
0
1000
2000
3000
4000
5000
6000
Ground DNTF
Intensity/[A.U]
Figure 4.
XRD test results.
3.2
SEM test results
SEM images of the two kinds of DNTF fillers are shown in Figure
5. From
Figure 5, it can be seen that the shapes of both types DNTF particles are mostly
flaky. The particle sizes of ground and recrystallized DNTF are about 10-15
μm
and 2-3
μm respectively. The flakiness of the crystals may be related to the
molecular structure of DNTF and makes for a high packing density and hence
high energy of explosion [17].
404
C. An, X. Wen, J. Wang, B. Wu
a. b.
Figure 5.
SEM images of the two kinds of DNTF fillers, a:
recrystallized DNTF;
b: ground DNTF.
3.3
DSC test results
Figure 6 shows the DSC curves for raw DNTF and GAP/DNTF at 1, 2, 5 and
10 K·min
−1
heating rates. An endothermic peak (108.9-109.6 °C) can be seen
for the four heating rates in Figure 6 (A,
B). The DSC results show that DNTF
began to melt at about 109 °C. For the same sample, the exothermic peak
temperatures decreased at a slower heating rate. This observation proves that
thermal decomposition occurs more easily when the heating rate is slower. The
exothermic peak temperatures of the GAP/DNTF are lower than for raw DNTF.
50
100
150
200
250
300
350
400
-4
-2
0
2
4
6
8
10
12
14
a
Tp=248.48 °C
b
Tp=256.52 °C
c
Tp=265.36 °C
d
Tp=276.78 °C
Temperature /
°C
a
b
c
d
A
Heat flow / wg
-1
50
1001
50
2002
50
3003
50
40
0
-4
-2
0
2
4
6
8
10
12
14
a
a
Tp= 247.44 °C
b
Tp=255.64 °C
c
Tp=264.55 °C
d
Tp=275.89 °C
Heat flow / wg
-1
Temperature /°C
b
d
c
B
Figure 6.
DSC curves of raw DNTF (A) and GAP/DNTF (B) at heating rates
of (a) 1 K·min
−1
, (b) 2 K·min
−1
, (c) 5 K·min
−1
and (d) 10 K·min
−1
.
The thermal decomposition kinetics parameters of raw DNTF and the GAP/
DNTF PBX can be calculated using the Kissinger method (Equation 1) [18].
410
C. An, X. Wen, J. Wang, B. Wu
and Application of High Energy Density Material DNTF,
J
.
Acta Armamentarii
,
2004
,
25
(2), 155-158.
[9] Wang Q.H., Properties of DNTF-based Melt-cast Explosives,
Chin. J. Explos.
Propellants
,
2003
,
26
(3),57-59.
[10] Hu H.X., Qin G.M., Zhang Z.Z.,
3,4-Di-nitrofurazanfuroxan Explosive
, China
Patent 02101092. 7,
2002
.
[11]
Shi M.D., Research Progress of GAP and GAP Propellant,
Chin. J. Explos.
Propellants
,
1994
,
17
(1), 9-16.
[12]
Tang C.J., Lee Y.J., Litzinger T.A., Simultaneous Temperature and Species
Measurements of the Glycidyl Azide Polymer (GAP) Propellant During Laser-
Induced Decomposition,
Combust. Flame
,
1999
,
117
(1), 244-256.
[13]
Kubota N., Sonobe T., Combustion Mechanism of Azide Polymer,
Propellants
Explos. Pyrotech
,
1988
,
13
(6), 172-177.
[14]
Frankel M.B., Grant L.R., Flanagen J.E., Historical Development of Glycidyl Azide
Polymer,
J.
Propul. Power
,
1992
,
8
(3), 560-563.
[15]
Experimental Methods of Sensitivity and Safety
(in Chinese), National Military
Standard of China,, GJB/772A-97,
1997
.
[16]
Yang G.C., Nie F.D., Huang H., Preparation and Characterization of Nano-TATB
Explosive,
Propellants Explos. Pyrotech
.,
2006
,
31
(5), 390-394.
[17] Zhou Y.S., Zhang Z.Z., Li J.K.., Crystal Structure of 3,4-Dinitrofurazanofuroxan,
Chin. J. Explos. Propellants
,
2005
,
28
(2), 43-46.
[18] Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis,
Anal. Chem.
,
1957
,
29
(11), 1702-1706.
[19]
Dobratz B.M., Crawford P.C.,
Properties of Chemical Explosives and Explosive
Simulants
, Report No. UCR-S1319,
1974
.
[20] Hu H.X., Zhang Z.Z., Zhao F.Q., A
Study on the Properties and Application of
High Energy Density Material DNTF,
Acta Armamentari
,
2004
,
25
(2), 155-158.
[21] Stepanov A.I., Dashko D.V., Astrat’ev A.A., 3,4-Bis(4′-nitrofurazan-3′-yl)furoxan:
a Melt Cast Powerful Explosive and a
Valuable Building Block in 1,2,5-Oxadiazole
Chemistry,
Cent. Eur. J. Energ. Mater.
,
2012
,
9
(4), 329-342.
[22]
Li H.X., Wang J.Y., An C.W., Study on the Rheological Properties of CL-20/HTPB
Casting Explosives,
Cent. Eur. J. Energ. Mater.
,
2014
,
11
(2), 237-255.

Fuente: http://www.wydawnictwa.ipo.waw.pl