El programa MEADS (Medium Extended Air Defense System) tiene como objetivo reemplazar al sistema de misiles PATRIOT en USA, al antiguo sistema HAWK en Alemania y al también antiguo NIKE Hercules en Italia. MEADS tendrá la capacidad de destruír aeronaves enemigas, misiles de crucero y UAVs dentro de su alcance, proveyendo ademas una nueva generación de capacidades conjuntas de defensa aérea y contra misiles balísticos.
The Medium Extended Air Defense System (MEADS) program aimed to replace Patriot missiles in the United States, the older Hawk system in Germany, and Italy’s even older Nike Hercules missiles. MEADS will be designed to kill enemy aircraft, cruise missiles and UAVs within its reach, while providing next-generation point defense capabilities against ballistic missiles. MBDA’s SAMP/T project would be its main competitor, but MEADS aims to offer improved mobility and wider compatibility with other air defense systems, in order to create a linchpin for its customers’ next-generation air defense arrays.
The German government finally gave their clearance in April 2005, and in June 2005 MEADS International (MI) formally signed a contract worth approximately $3.4 billion to design and develop the tri-national MEADS system. In February 2011, however, events began to signal the likely end of the program. Since then, the US Administration has been battling with Congress where there is little support for a continued American participation.
MEADS: The System
MEADS was intended to match up against foreseeable enemy aircraft over the next 30 years, as well as stealthier and/or supersonic cruise missiles, UAVs, and even ballistic missiles. The system will incorporate its own 3-radar set, along with networked communications for use as either a stand-alone system, or a component of larger air defense clusters that include other missiles.
The core vehicle for the US MEADS program appears to be the USA’s FMTV 6×6 trucks. These 5-ton capacity vehicles will carry the radars, containerized Tactical Operations Center (TOC), launcher, and reload packs. FMTVs can be carried in C-130 aircraft, and MEADS International has already tested some of the prototype systems for fit. Italian and German test vehicles have used their own national truck brands, and the Germans in particular appear to leaning to larger vehicles.
During the MEADS SDD phase, MEADS International was asked finalize designs for equipment and complete their integration into the system. The system’s 6 major equipment items are:
[1] Netted and distributed Battle Management, Command, Control, Communications, Computers, and Intelligence (BMC4I) Tactical Operations Center (TOC). The 3-workstation TOC shelter is a joint project of EADS, Lockheed Martin, and MBDA. It can be carried by 3 different trucks to meet national preferences, and adapter systems could probably be built to widen the number of compatible wheeled and/or tracked vehicles.
[2] Two 360-degree, Multifunction Fire Control Radars (MFCRs). The X-band MFCR employs active phased array technology, using transmit/receive modules developed in Germany. It also incorporates advanced identification-friend-or-foe (IFF) sensors with improved capabilities. As a point of comparison, the G-band AN/MPQ-65 radar used in the PATRIOT Config-3 system has a 120 degree field for horizontal coverage, narrowing to 90 degrees for engagement. Raytheon has begun studies toward a rotating 360-degree version, but MEADS has one now.
[3] Surveillance radar. These “Low Frequency Sensor” UHF radars will have self-diagnostic capability, to ease the extra maintenance load caused by replacing 1 MPQ-53/65 Patriot radar with 3 improved MEADS radars.
[4] Missile Segment Enhancement (MSE) certified missile round based on the current PAC-3 missile, augmented by Missile Segment Enhancement (MSE) technologies that will give it greater range, and possibly greater performance.
[5] Light weight launcher, mounted on a truck with a built-in winch to auto-load the missile packs.
[6] Reloader truck.
Lockheed Martin’s PAC-3 MSE is still a hit-to-kill missile, with upgraded batteries, an 11-inch dual-pulse solid fuel rocket motor, a thermally hardened front end, a enlarged fins and better control surfaces to improve maneuverability, upgraded guidance software. The desired end result is a longer range missile that is more agile, and able to counter both tactical ballistic missiles and more conventional threats. It’s also being designed to cost less than existing PAC-3 missiles, and time will tell if it succeeds.
The missile has survived MEADS’ demise, and US Army budget documents indicate that production will begin in FY 2014. It will be added to existing PATRIOT batteries, and current plans call for 1,680 missiles to be produced.
MEADS: Mobility and Employment
As attack drones like Israel’s anti-radar Harpy long-loiter UAV, loitering precision missiles, and improved anti-radar missiles like the Italo-American AGM-88E AARGM come into service, air defense assets will also find themselves needing to use “switch-on/ switch-off” and “shoot and scoot” tactics to survive. This was certainly the pattern used by one successful battery in Serbia which not only survived the NATO air campaign, but used its 1970s-era SA-3 missiles to down an American F-117 stealth fighter. The idea is to have MEADS elements or other air defense systems “plug and fight,” joining in or breaking off from a common-picture air defense network as needed, in order to protect or reposition themselves.
Existing Patriot systems have some mobility to provide this kind of self-protection, but they aren’t really designed to maneuver with attacking US forces. Indeed, during Operation Iraqi Freedom in 2003, the Patriot system’s heavy HEMTT trucks and other large equipment found themselves hard-pressed to keep up with the US military’s rate of advance.
MEADS would be better than that, but it isn’t really a forward air defense system for mobile units. It was originally envisioned to be transportable by C-130 or equivalent medium transport aircraft, able to roll off the transport and begin operations very shortly thereafter. At present, most elements are designed to be compatible with the USA’s 5-ton capacity FMTV 6×6 trucks; depending on their final weight, FMTV-mounted MEADS components may even be transportable as underslung loads on medium-heavy helicopters like the CH-47 Chinook, CH-53 Super Stallion, and the notional Franco-German Heavy-Lift Helicopter. Even the container-sized Tactical Operations Center (TOC) is being designed to be able to drive on and drive off the C-130, or serve as an underslung load on CH-47/ CH-53 class helicopters.
Cutting set-up time and adding air-transportability should help MEADS improve on the Patriot system’s deployability into theater, and mobility within it. Even so, MEADS will retain mobility limitations of its own, due to the terrain limits inherent in all trucks. German forces will have options like their short-range LeFlaSys armored vehicle system for full front-line mobility, while US forward units on the move may end up relying on equally short range Stinger-based systems like hand-held FIM-92 missiles, Avenger Hummers, LAV-II ADs, or Bradley M6 Linebackers for short-range air defense. Note that a number of Bradley M6 and Hummer Avenger systems have been converted out of the air defense role, weakening US forward-based air defense options.
MEADS is designed to operate behind those forward defense systems, and its broader goal was an open architecture system that can plug into broader defensive systems, working with shorter-range systems like the USA’s SLAMRAAM/CLAWS vehicle-mounted AMRAAMs, Italy’s Spada 2000, etc.; with wider surveillance systems like the JLENS tethered blimps; and with longer range theater-defense systems like the Lockheed/ Raytheon/ Northrop-Grumman THAAD, IAI/Boeing’s Arrow-2, or even Raytheon’s naval SM-3 missiles, connected to a common view of the battlefield via Co-operative Engagement Capability. That open architecture’s first big test, will be much simpler, however: integrating a vertical launch version of the European IRIS-T short-range air-to-air missile alongside the longer-range, radar-guided PAC-3 MSE.
MEADS International claims that this emphasis on open architecture, plug-and-fight system capabilities in MEADS’ requirements has led to a MEADS Tactical Operations Center (TOC) that can support other MEADS stations, or even other air defense systems. Normal operations require only 2 of the 3 workstations, leaving an additional seat that lets the MEADS TOC be used as a wider task force level TOC, complete with German, Italian, U.S, and NATO command and control functionality. Germany planned to use this capability to integrate MEADS with ground-launched IRIS-T short range infrared guided missiles.
Lockheed Martin is even touting the MEADS BMC4I TOC as a key component of the US Army’s competition for an IBCS system that would integrate all anti-aircraft defenses in a sector.
MEADS: The Program
In September 2004, the NATO MEADS Management Agency (NAMEADSMA) awarded MI a Design & Development letter contract valued at approximately $2.0 billion + EUR 1.4 billion (about $3.7 billion total at the time). Because Germany hadn’t signed yet, the initial letter contract involved preliminary funding to proceed on a “limited basis,” under the authority of the American-Italian MEADS Design and Development Memorandum of Understanding. Germany’s acceptance and signature in April 2005 enabled NAMEADSMA to sign the full MEADS D&D risk-reduction contract.
The MEADS venture is being led by Lockheed Martin Corp. and includes MBDA Italia, French-German aerospace firm EADS and Germany’s MBDA-LFK (LenkFlugKorpersysteme). Together, these companies have focused an international engineering team in Orlando to develop systems and technologies for the MEADS program. Development work was allocated in accordance with national funding: USA 58%, Germany 25%, and Italy 17%.
- Lockheed Martin: Orlando, FL; Dallas, TX; Huntsville, AL; and Syracuse, NY.
- MBDA-LFK: BMC4I control suite, launcher, Surveillance Radar; and Multifunction Fire Control Radar (MFCR) elements at plants around Munich, Germany.
- MBDA’s Italian operating company MBDA Italia will perform work on the BMC4I, MFCR, and launcher/reloader elements in Rome, Italy.
The original 1990s plan for MEADS was for production by 2007, but the 2004 Memorandum of Understanding resulted in a late start, and envisioned System Design & Development until 2014. The US Army intended to see benefits before that 9-year period was over, revising its MEADS acquisition strategy to combine management, development, and fielding of both the MEADS and PATRIOT systems. Under this spiral development approach, the Patriot/PAC-3 system would evolve toward MEADS through the early introduction of the MEADS Major End Items (MEI).
Key milestones for MEADS included a systems requirements review, followed by subsystem and system-level preliminary design reviews from about February 2007 to August 2007. Subsystem critical design reviews (CDR) were finished in 2009, followed by a system-level CDR that finished in 2010. A series of 9 flight-tests were planned from 2011 – 2013, and deployment was scheduled for 2018.
That won’t happen in the USA. By 2009, the US Army had examined its budgets, and declared that it didn’t want the system. They also added a long string of extra requirements, involving expensive integration with back-end command and control systems. The US Missile Defense Agency might have picked MEADS up instead, but by 2011, MEADS production date with all the new requirements had slipped to 2018 at the earliest, and the Pentagon had reservations about MEADS ability to meet even that. The program’s cost estimate was around $4.2 billion, and revised estimates threatened to push it even higher. In response, the USA moved toward ending the program at the end of the Design and Development MoU. Later in 2011, Germany also announced that it would stop at the end of the MoU, as part of their ongoing budget austerity program.
Lockheed Martin has pinned some hopes on its eventual revival if tests go well, and they have. Germany and Italy are reconsidering a European Follow-On Program (EFOP), and interest from Japan may yet help to save MEADS. Russia has also provided considerable assistance, by reigniting an atmosphere of threat and crisis in Europe, and China has done the same in Asia. Their inadvertent cooperation may yet prove to be as pivotal to MEADS as the USA’s.
If Not MEADS, What?
In MEADS’ absence, the US Army intends to continue relying on its existing PATRIOT batteries, with some system upgrades and the new PAC-3 MSE missile. The MEADS LFS surveillance radar, developed under a separate contract with Lockheed Martin, may be the next PATRIOT addition.
Germany and Italy would have several options, if they wish to continue air defense modernization. MEADS will finish its reconfigured development program, but it will do so with key technologies unfinished.
One option would be to finish MEADS and buy it. Drumming up export interest elsewhere is critical, and they’ve reportedly received some interest in via Poland’s WISLA national air and missile defense program, and from Japan.
Italy would like to field a single MEADS battery around Rome, as the best point defense system they can afford. Or, they could simply delete the requirement for a MEADS battery, and rely on their high-end modern SAMP/T Aster-30 systems , which are BMD-capable against short range missiles.
Germany has several options of its own. One possibility would be to take the same approach as the USA, and upgrade their existing PATRIOT batteries. They’re already in talks to do so, and would like to add some MEADS technologies, just as the USA is doing. If they do, the BMC4I command system and links to IRIS-T SL/SLS missile launchers are likely to join whatever systems the USA integrates with PATRIOT.
If Germany wanted to reach for more range than MEADS, and better ballistic missile defense than PATRIOT, they could buy EuroSAM/MBDA’s SAMP/T systems of their own as a new customer. Adding Germany to create a customer core of France, Germany and Italy would improve export prospects in Europe and abroad, while offering useful industrial spinoffs as the system becomes the core of Europe’s missile defense. SAMP/T’s down side is its high cost, a potentially fatal problem given the Euro-zone’s fiscal woes and Germany’s budget austerity. On the other hand, Iran’s continued development of longer-range missiles and nuclear weapons is likely to continue ratcheting up the pressure for European missile defense. If Europe decides not to rely wholly on America’s “phased adaptive approach” of off-continent THAAD systems and land-based SM-3 missiles, SAMP/T would be the logical choice.
Another option for Germany would be to sacrifice ballistic missile defense capability, and field less expensive replacement systems like the AIM-120 AMRAAM-based NASAMS from Kongsberg and Raytheon, already employed by Dutch, Norwegian, and Spanish forces within NATO. NASAMS already employs the AIM-120 AMRAAM missile used by the Italian and German air forces. It can be supplemented with short-range, radar-independent missiles like the IRIS-T SL which Germany intended to add to MEADS, or NASDAMS can extend its overall range by adding the RIM-162 ESSM that serves on German ships. To date, however, NASMS installations have been fixed sites. Mobility is possible, but some work would be required.