Síntesis de materiales energéticos mediante microfluídica

En esta importante revisión se explora la síntesis de materiales energéticos  mediante reactores microfluídicos. Estos reactores permiten un control preciso de las reacciones químicas y la formación de gotas en la microescala, lo que da lugar a partículas controlables morfológicamente con una uniformidad mejorada y una alta eficiencia. La revisión recopila diversas metodologías de publicaciones dispersas, centrándose en las técnicas de micromezcla y basadas en microgotas, y analizando estrategias para controlar parámetros críticos en las reacciones químicas. También compara las ventajas y desventajas de estos métodos y aborda desafíos como la obstrucción, las zonas muertas y los bajos rendimientos de producción. Las posibles soluciones a estos desafíos incluyen la integración de sonido, óptica o energía eléctrica. La revisión tiene como objetivo proporcionar una descripción general completa de los enfoques microfluídicos en la síntesis de materiales energéticos y ofrecer información valiosa para futuras investigaciones.


Abstract

Energetic materials, characterized by their capacity to store and release substantial energy, hold pivotal significance in some fields, particularly in defense applications. Microfluidics, with its ability to manipulate fluids and facilitate droplet formation at the microscale, enables precise control of chemical reactions. Recent scholarly endeavors have increasingly harnessed microfluidic reactors in the realm of energetic materials, yielding morphologically controllable particles with enhanced uniformity and explosive efficacy. However, crucial insights into microfluidic-based methodologies are dispersed across various publications, necessitating a systematic compilation. Accordingly, this review addresses this gap by concentrating on the synthesis of energetic materials through microfluidics. Specifically, the methods based on micro-mixing and droplets in the previous papers are summarized and the strategies to control the critical parameters within chemical reactions are discussed in detail. Then, the comparison in terms of advantages and disadvantages is attempted. As demonstrated in the last section regarding perspectives, challenges such as clogging, dead zones, and suboptimal production yields are non-ignoble in the promising fields and they might be addressed by integrating sound, optics, or electrical energy to meet heightened requirements. This comprehensive overview aims to consolidate and analyze the diverse array of microfluidic approaches in energetic material synthesis, offering valuable insights for future research directions.

Descargar archivo pdfFuente: https://www.sciencedirect.com